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I. Introduction.

The nuclear shell model has had considerable success in 
recent years in accounting for various regularities in nuclear 

properties. In this model one considers the nucleons as moving 
independently in an averaged potential. For a particular nucleon 
this potential represents its interaction with all other nucleons 
in the nucleus. In particular, it has been possible by choosing 
an appropriate field, containing rather strong spin-orbit coupling, 
to obtain a succession of single particle states which reproduce 
the experimentally observed discontinuities associated with the 
so-called magic numbers.*

* M. G. Mayer, Phys. Rev. 75, 1969 (1949).
O. Haxel, J. H. D. Jensen, and H. E. Suess, Zs. f. Physik 128, 295 (1950).
** A. Bohr, Dan. Mat. Fys. Medd. 26, no. 14 (1952).
A. Bohr and B. Mottelson, Dan. Mat. Fys. Medd. 27, no. 16 (1953).
A. Bohr, E. Munksgård, Copenhagen (1954).
In the following, these papers are referred to as AB, BM, and AB 1954, 

respectively.
Cf. also D. Hill and J. A. Wheeler, Phys. Rev. 89, 1102 (1953).

1*

In the usual formulation of the shell model the potential is 
assumed to be isotropic, but it has been found that nuclei with 
proton and neutron numbers very different from those corre
sponding to closed shells have large deformations, as evidenced, 
e. g., by large quadrupole moments. The deformation of the 
nuclear field may have a great influence on the motion of the 
individual nucleons, and it is the aim of this paper to consider 
the binding states of nucleons in such a deformed potential.

The introduction of a non-spherical binding field implies 
that the nuclear shape and orientation must be considered 
dynamical variables. These variables are associated with the 
collective types of nuclear motion which accompany variations 
in the binding field. The interplay between these collective modes 
of motion and the individual-particle motion forms the basis of 
the unified nuclear model.**
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The nuclear properties resulting trom this interplay are 
found to depend essentially on the magnitude of deformation, 
which again depends on the nucleonic configuration. In the 
regions of major closed shells the equilibrium shape of the 
nucleus is spherical, and the individual-particle spectrum may 
be obtained by considering particle motion in a spherical held, 
as in the shell model. It is expected, however, that in these regions 
the nuclei have also additional modes of excitation of the col
lective vibrational type. The dependence of the particle motion 
on the nuclear shape implies for these nuclei a small inter
weaving of collective and particle motion, which may be de
scribed by a perturbation treatment. The further addition of 
particles leads to a larger nuclear deformation. The coupling 
between collective modes and individual-particle modes of motion 
may in such cases lead to a very complicated structure of nuclear 
states.

Still further from the closed shells, however, the situation 
again simplifies. The nucleus then acquires a large deformation 
with a resulting stability of orientation. It is then possible to 
separate approximately between intrinsic nucleonic motion relative 
to the deformed but fixed nuclear field, and the collective rota
tional and vibrational motion, which leaves unaffected the 
intrinsic structure.*

The separation of the different modes of motion is best 
evidenced empirically by the occurrence of rotational spectra, 
which are found to obey the simple theoretical expressions with 
remarkable accuracy.**

The separation of the nuclear motion into collective and 
intrinsic modes corresponds to the assumption of a wave function 
of the product type as solution to the nuclear wave equation

= Z • 9Mb ' ^rot •

Here / represents the intrinsic motion of the nucleons, which 
can be expressed in terms of the independent motion of the

* In AB, BM and AB 1954 this approximate solution of the equations of 
motion appropriate to strongly deformed nuclei is denoted "the strong coupling 
scheme”.

** Cf., e. g., AB 1954 and A. Bonn and B. Mottelson, Chapter 17 of "Beta 
and Gamma Rav Spectroscopy”, ed. bv K. Siegbahn, North Holland Publishing 
Co. (1954).
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individual particles in the deformed field, which is considered as 
stationary. The second factor, ç?vib, describes the vibrations of the 
nucleus around its equilibrium shape, while Trot represents the 
collective rotational motion of the system as a whole.

Most nuclei are expected to prefer shapes of cylindrical 
symmetry, and this is confirmed by the observed rotational 
spectra.*  Therefore we here restrict ourselves to the consideration 
of particle states in fields of the spheroidal type.

In this case of axial symmetry, the intrinsic motion is char
acterized by the quantum numbers £?p, the component of angular 
momentum of each nucleon along the nuclear axis. The total Q 
is given by Apart from accidental degeneracies, states are 
doubly degenerate (corresponding to ±ßp), and the total /, in 
the following denoted /q, is therefore simply the antisymmetrized 
product of individual-particle wave functions /q . The presence 
of direct particle forces produces to first order a shift in the 
binding energies without, however, affecting the wave functions, 
'fhe nucleonic coupling scheme will be essentially modified only 
if the particle forces are comparable with the coupling of indi
vidual particles to the nuclear axis.

The rotational motion is characterized by the quantum num
bers I, M, and K, i. e. the total angular momentum, its projection 
on the space, fixed axis (later denoted by z"), and its projection 
on the intrinsic nuclear axis (z'), respectively. (See Fig. 1.)

We shall not here be concerned with the corresponding 
vibrational quantum numbers, since we always assume that we 
are in the vibrational ground state.

Beside the rotational symmetry around the nuclear axis we 
also assume that the nucleus has reflection symmetry through a 
plane perpendicular to this axis. The wave function has then to 
be symmetrized (to possess a definite parity). The appropriately 
symmetrized wave function may be written in the form**

ii. IMKy . (9,.) + (_)« (1)

* There may be special configurations for which the cylindrically symmetric 
shape is not stable. The rotational spectra are then of a more complex character 
than in the symmetric case. Cf. B. Segall, Phys. Bev. 95, (>05 A (1954) and 
M. .Jean and L. Wilets (to be published).

** BM (11.15).
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Fig. 1. Angular momentum diagram.
In the unified model the total angular momentum / is composed of two parts, 

one part R generated by the collective motion of the nucleus, the other part J 
representing the intrinsic motion of the nucleons.

In the coupling scheme appropriate for large deformations the nucleons move 
independently with respect to the deformed nuclear field. This motion is charac
terized by the constants of the motion the component of angular momentum 
of each nucleon along the nuclear axis. In such a structure the magnitude of the 
total J is not a constant of the motion, though its component on the nuclear sym
metry axis is a good quantum number and is denoted ß, where ß = 27ß„.

''
Finally the rotational state of the system is described in terms of the quantum 

numbers J, the total angular momentum, its ^''-component A/, and its z'-compo- 
nent K.

In the ground state, R is perpendicular to z'(Í2 = K), i. e. the collective 
rotation takes place around an axis perpendicular to the nuclear symmetry axis.

The phase (—is thought of as a matrix when /p (the 
angular momentum of the p1h particle relative to the potential) 
is not a constant of the motion. The normalization factor comes 
from the particular normalization of the rotational wave functions 
Îjîk (A), where 0f refers to the Eulerian angles. The normalization 
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is such that the wave functions represent unitary transformations 
from the coordinate system (æ", y",z") to the nuclear coordinate 
system (.r', y', z’).

The present paper consists of two main parts. In the first 
part a model is formulated for the interaction of the nucleons 
with the deformed nuclear field by introducing a single-particle 
Hamiltonian of a simple type, essentially containing a modified 
ellipsoidal oscillator potential and a spin-orbit term. A con
venient representation, using the eigenvectors of an isotropic 
three-dimensional harmonic oscillator as a basic set, is then 
introduced. The calculated single-particle eigenvalues and eigen
functions, obtained by means of an electronic digital computer, 
are arranged in tables and diagrams.

In the second part of the paper the applications of the single
particle states which have been calculated are discussed. First, we 
deal with the possibility of obtaining the total internal energy of 
the nucleus, the equilibrium deformation, and levels of particle 
excitation. Finally, expressions for the decoupling factor in 
rotational spectra, the magnetic moment, and the electromagnetic 
transition probabilities are given in terms of the particular wave
function representation chosen.

An analysis of empirical data (e. g. level spins, parities, 
magnetic moments, excitation spectra, and transition probabilities) 
compared with the results of the model is to be undertaken at a 
later date.*  Already at this point, however, the general results of 
the calculations are published because of their wide range of 
application to different problems of nuclear physics.

* Note added in proof: For preliminary results of such an analysis cf. 
B. Mottelson and S. G. Nilsson, Zs. f. Physik 141,217 (1955), and B. Mottf.lson 
and S. G. Nilsson, Phys. Rev. (in press).

II. Calculation of the Binding States in a Deformed 
Potential.

a. Choice of field.

To represent the interaction of one nucleon with the nuclear 
field we assume a single-particle Hamiltonian of the following
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form*» (For the sake of completeness we should really add 
a suffix p to all the quantities in this section, referring to the 
fact that they are single-particle quantities. However, we simplify
the notation by dropping this index from the beginning.)

H = //0 + <:/•$ + I)f,
(2)

where
Af z •> /•> f> •> ,•>r r 1 , + — (CO" .1’ “+ CO" y "+ CO" Z ") , (2 a)

w here x', y', z are the coordinates of a particle in a coordinate 
system fixed in the nucleus.

This means that an oscillator potential is first adopted for 
the sake of simplicity. To this is added the usual spin-orbit term. 

_2
The 7 -term then gives a correction to the oscillator potential 
especially at large distances (important for high /-values). This 
serves to depress the high angular momentum states. One might 
also say it has some of the features of the interpolation, between 
the square well and the oscillator potential, which is usually em
ployed in the shell model. In the case of spherical symmetry, 
we must require that (2) and (2a) give the known sequence of 
single-particle levels considered in the shell model. This puts a 
strong limitation on the choice of C and I) (see further the dis
cussion on p. 15). In Fig. 2 one can compare the level scheme 
(with our parameter choice) for the spherical case, with the level 
spectrum proposed by Klinkenberg* ** ***,  which represents a com
pilation of empirical data interpreted on the basis of the shell 
model.

* The author is indebted to Dr. A. Bohr, Dr. B. Mottelson, and Prof. I. Wal
ler for suggestions regarding the choice of a simple potential.

** Several authors have considered the motion of nucleons in deformed fields. 
E. Feenberg and K. G. Hammack, Phys. Rev. 81, 285 (1951), and S. Gallone 
and C. Salvetti, Il Nuovo Cimento (9) 8, 970 (1951), consider an ellipsoidal square 
well, and D. Pfirsch, Zs. f. Physik 132, 409 (1952), treats the anisotropic harmonic 
oscillator, all using perturbation theory. S. Granger and R. D. Spence, Phys. Rev. 
S3, 460 (1951), report that they have an exact solution for an infinitely deep 
spheroidal well, without any 7-s-term in the Hamiltonian, however. Finally, 
Pfirsch, in the publication mentioned, and S. Gallone and C. Salvetti, Il 
Xuovo Cimento (9) 10, 145 (1953), have studied the exact solutions of an anisotropic 
harmonic oscillator without spin-orbit force.

*** P. F. A. Klinkenberg, Rev. Mod. Phys. 24, 63 (1952).

It is expected that many features of nuclear states obtained
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N-0 (^0) ---------SV2

H- H„ * D? *Cls

Pig. 2. Level order for the spherical case compared with the shell model level order.
Energy levels of the potential assumed in formula (2) for the spherical case 

(<) = 0) are plotted to the left. The right part of the figure shows the level scheme 
proposed by P. Klinkenberg, which he has obtained from empirical data inter
preted according to the shell model. The level scheme of Dr. Klinkenberg is 
reproduced by his kind permission from Reviews of Modern Physics. 
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one single parameter of deformation d

(3 a)

(3 b)

coxco{/coz = const.

from (2) are more general than the particular field employed, 
since the structure is especially determined by the angular pro
perties, while the radial matrix elements alone reflect the detailed 
properties of the nuclear field.

We confine ourselves to the case of cylindrical symmetry and 
further introduce

Neglecting the 
x', y', z'. In this

- -2
/•s- and I -terms the problem is separable in 
case a change, e. g., of cox only changes the 

scale of the wave function along the .r'-axis. As the scale is pro

portional to -7=, the condition of constant volume of the
j/cox 

nucleus leads to

co; = 1 -

Keeping this condition in the general case together with (3 a) and 
(3b), co0 has to depend on ó in the following way

/ 4 16 \-1/6
CO0(<3) = . (4)

co0 is the value of co0(0) for <3 = 0. It turns out that d is related 
to the quantity ß, used in the papers by A. Bohr and B. Mottel- 
son, to first-order as*

* Cf. (16) and BAI (V. 7).

(ä)

We introduce new coordinates 

(6)

and split Ho into a spherically symmetric term Ho and a term 
representing the coupling of the particle to the axis of the 

deformation
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(7)
where

H„ = +r2! (7a)

h0 = — l/^7-s y2o- * (7 b)

b. Choice of represental ion.
o

A representation is chosen with H{} diagonal, together with 
— 2 o
l , lz, and sz, which all commute with Ho. The corresponding 
quantum numbers are denoted /, zl and 27.

None of the above operators commute with the total Hamilton
ian. A commuting operator, however, is jz — lz + sz. We denote 
the corresponding quantum number by Q. For the states corre
sponding to a given Q, the vectors | A7/127> with 4 4- 27 = £> 
are used as basic vectors. The quantum number represents 
the total number of oscillator quanta. One has

Ho I NlAE > = HV + 11 h co01 M/127 >.

In configuration space representation the basic vector looks like

(8)

where the relation
2 n + I = Ar (8a)

defines n. Further 
metric function.

n, r2 is the confluent hypergeo-

In this representation the different parts of the total Hamil-

* We assume here and throughout this paper that the phases of the spherical 
harmonics are chosen in accordance with E. U. Condon and G. H. Shortley, 
The Theory of Atomic Spectra, Camb. Univ. Press, London (1935).
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tonian have very simple matrix elements; in particular are / and o , ,
Ho diagonal in this representation.

The matrix elements < I'A'X' | 1 -s | 1AX )> have the following 
selection rules

I A' IZ'+l
7=/',/l=¿ , X = , A + X = A' + X'.U'±i

We write down, for completeness, the non-vanishing elements

< M± 1 =F I /-s j hl ±> = l|/(/±±) (7± A + 1) (9a)

< IA ± P'S I hi ±> = ±1/1, (9b)

denoting 27 = + ^- and X = —1 simply by d~ and —, respect

ively, in the vectors.
The only part of the Hamiltonian not immediately given is 

H,), which is proportional to r2T2o- H easy to show that

</'/!' I y20|//l> = 1/ — ]/2 /+—< 7 2/ 0 I 7 2 /'Zl'></2()() I 7 2/' 0> 
y 4 n y 2 I + 1

in the Condon-Shortley notation for Clebsch-Gordon coefficients.
Matrix elements of r2 are calculated most easily with the help 

of recursion formulae for confluent hypergeometric functions. 
The general matrix element for rz is given later in (41), but the 
simplified expressions for Z = 2 are given here:

< NI I r2 I Nl > = N + ~

< Nl—2 I r2 I N/> = 2 1/ (n + l)(n + / + *

(11a)

(11 b)

(He)

(10)
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< N—2 1—2 I r2 I Nl> = + I + (lld)

<N—2 I + 2 I r2 I Nl > = |/n (n — 1). (lie)

The seleetion rules for r2 T20 are

i /' IN'A = A', Z = £', I =1 , N = I
r ± 2 I N' ± 2

The selection rules for r2 )'2O imply that there is a coupling 
between states with different Ar (the difference in zV being an even 
number). The approximation is made, however, that this coupling 
is neglected. Levels belonging to, e. g., the .V-she 11 and the 
(AT + 2)-shell are on the average separated by an energy of 
2 hco0, which, for most values of the parameters, is much larger 
than the corresponding non-diagonal coupling energies.

In fact, it can be shown by changing the representation 
slightly, that these couplings between shells of different .V can be
accounted for by a small change in 
parameters <5, co0 etc., and a small i 
-2
l -terms (cf. Appendix A).

the interpretation of the 
ation of the 1-s- and

Non-vanishing matrix elements of H are thus considered only 
between base vectors NlAXy belonging to the same Ar and Q.

A note should be made at this point that there are a few 
cases when levels of the same spin and parity (but belonging to 
A’-shells with xV different by two) cross each other within the range of 
the parameter considered. Fig. 5 shows two such crossings be
tween levels of the Ar = 4 and the N = 6 shells. One crossing occurs 
between the Q — 1 /2 levels #51 and # 60 and the other between 
the Q — 3/2 levels # 42 and # 57. (Concerning the labelling of 
the levels, see p. 19.) These crossings are removed when account 
is taken of the neglected coupling terms between the AT- and the 
(xV + 2)-shells.*  The coupling terms between the crossing levels 
are calculated in Table II.

* The corresponding energy levels of the Hamiltonian Ht, considered in Ap
pendix A, actually cross in the exact treatment for a deformation different from 
zero. With that form of the Hamiltonian (//,) there is, however, associated an 
additional degeneracy compared to the case considered here.
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c. Details of calculations.

From (2) and (7) we have

H = Ho + Hô + Cl-s + DÍ\

As Ho is diagonal in the representation chosen, and its matrix 
elements are all ecpial for a constant ;V, it is advantageous to 
•°C- °bring out of the matrix H and only consider H — Ho.

We introduce new parameters /z and x instead of C and Z)

1 C_
2 hco0

2 I)

(12a)

(12 b)

Further we introduce a new «-dependent deformation parameter

which does not depend on ô.
It is then convenient to write

where
H—Ho — xhco0R,

R = r/ U — 2 1 • s — /il

(12e)

(12f)

is an operator that depends only on two parameters, rj and /i.
The final calculations now consist of an exact diagonalization 

of the (dimensionless) matrix R in the representation chosen. 
R is treated as a function of the deformation parameter r¡, and 
it is diagonalized for a sequence of ^-values (cf. below). The 
only other parameter that enters R is /z, which is independent 
of the deformation. The choice of /z is discussed below.

From the diagonalization of R, or rather its submatrices 
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belonging to certain N and Q, we obtain the eigenvalues r^^(^)< 
(Here « numbers the différent eigenvalues of the matrix.) The 
corresponding energy eigenvalues of the total H are then given as

= (jV„ + |j/i«>0(d) + (13)

Let us denote the corresponding eigenvector | NQu >. Its con
figuration space representation is denoted by %q in the Intro
duction.

The values of x and // are chosen, as mentioned earlier, in 
such a way that for <5 = 0 the sequence of levels of the shell 
model are reproduced. Of course we are free to let both x and « 
vary from shell to shell, i. e. vary with A7.

The parameter // determines the sequence of levels within 
the group of states belonging to a particular A7 by depressing 
(fo r ft > 0) the levels corresponding to higher /-values. The total 
energy spread of levels belonging to the same A7-shell is deter
mined primarily by the parameter x. In the numerical calcula
tions we have assigned values of fi for each A7-shell so as to 
reproduce (for 0 = 0) the assumed sequence of shell model 
levels as well as possible.

In the numerical calculations fi is chosen in the following
manner

N = 0, 1, 2
A7 = 3
N = 4
A7 = 5, 6
AT = 7

fi = 0
fi = 0.35 (0, 0.50)
fi = 0.45 (0.55)
fi - 0.45
fi = 0.40.

In general, this choice of fi means that in the lower A'-shells we 
use a pure oscillator and for higher iV-values we approach more 
to a square well (cf. Fig. 2).

In order to examine the sensitivity of our results to the parti
cular choice of fi, we have performed calculations for the shell 
with N = 3 employing a sequence of different /¿-values. The 
resulting level spectra are plotted as functions of the deformation 
parameter in Figs. 3 a, b, c. It is seen that, even for rather 
different choices of the level spectrum in the spherical potential 
(r¡ — 0), the results become quite similar for large r¡.
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o
Fig. 3 b.

-6 -4 -2 2 6 I
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Fig. 3 c.

Fig. 3 a, b, c. The influence of the choice of I -admixture in the potential on the 
energy eigenvalues.

Eigenvalues r (rj) corresponding to A' = 3 are depicted as functions of the 
deformation parameter with three different choices of p, the parameter of 
I -admixture in the assumed potential. The connection between the eigenvalues 
r (/;) and the level energy E is given by (13). One may notice that for large //-values 
(large deformations) the level order within the A" = 3 groups of levels is rather 
independent of p.

Finally, as regards the choice of x, one secs from (13) that the 
level spread within each Ar-shell is directly proportional to x. 
As the xV-shells overlap for a larger number of nucleons, x has 
to be chosen within certain limits to reproduce for ó = 0 the 
level order of the shell model. The arbitrariness in the choice 
of x is important particularly for Ar < 3.

In the final plot (Fig. 5) the value of x is taken to be 0.05 
for all levels. It is, however, easy to modify the plotting and use 
the result of the calculation for another x-value. This will mean 
two things: a) the same value of tj now corresponds to another 
deformation d according to (12 c), b) the second term in (13) 
is changed.

A reasonable value for co0 may be obtained by taking 
Dan.Mat.Fys.Medd. 2», no. 16. 2 
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the mean value of r'2 for all the nucleons to be equal to 

- • (1.2 • 10“13A¿)2 cm2, which gives /ico0^41 A-» MeV.*

* An estimate for the harmonic oscillator potential in accordance with the 
Thomas-F'ermi statistical model agrees with what one obtains by using the wave 
functions of the individual nucleons.

5
Thus for A 100 one has h(ni}— 8.8 MeV. This choice of 

hco0 and the choice of z made in the plot (z = 0,05) give, e. g., 
a spin-orbit splitting between g9/2 and glr¿ of 4.0 MeV.

In the calculation, submatrices of R were diagonalized up to 
and including N — 6. The largest, which corresponds to N = 6, 

1 . ,  . . .
ß = -, is then a 7x7 matrix. The calculation is repeated for 

six values of g (g = — 6, — 4, — 2, 2, 4, 6). Matrices of order 
3x3 and higher were treated with the help of the digital com
puting machine BESK in Stockholm. A method due to Jacobi 
was used in the machine calculations for matrix diagonalization.

Finally, the case 0 = 0 (or g — 0) corresponds to spherical 
symmetry and is already worked out. One obtains the behaviour 
of the levels in the vicinity of ô = 0 by introducing an | NljQ)- 
representation. Here the Hamiltonian is diagonal except for H¿, 
which can be treated as a perturbation for small Ô.

d. Arrangements of tables and main diagram.

Table I gives the eigenvalues r (rf) and the corresponding 
eigenfunctions as a sequence of coefficients Az p-1/2 and Az _Q+i/2, 
defined by

£?« ) = (A/ £)—1/21 -Vf (ß — 1 /2) + ) + Ai q +1/2 I V / (ß +1/2) — )}, (1 •
i

where the normalization of Aia is discussed below. (If we write 
(14) with coefficients a//i, we assume a normalization al a — 1)

lA
The basic vectors | NI (Q — 1 /2) + > and | NI (ß + 1 /2) —> are given 
above each separate table.

are written the base vectors o52 + ),

Consider, as an example, N = 5,-ß = - . Above the table 

532 + >, 553 — ) , and
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I 533 —>. The eigenvalues rx, r2, . . r4 are listed for each 
value of tj. Below each of them there are four numbers, which 
are the coefficients A52, A32, . . . with a normalization such that 
the first listed coefficient equals 1. Take, e. g., 77 = —4. The 
largest eigenvalue is — 2.676. To this corresponds the eigen
function 1.000 I 552 + > + 1.355 | 532 + > — 1.030 | 553 — > 
— 1.074 I 533 — >.

The numbers to the left in Tables I are referring to the 
curves in Fig. 5. In some instances these numbers are missing. This 
means that the level in question lies outside the range of the 
energy scale used in the diagram. Curves coming into the drawing 
from above left are labelled by letters.

Fig. 5 shows the energy eigenvalues Ea given by (13) as 
functions of the deformation parameters 77 or Ó, to which latter 
rj is related by (12 c). The scales for 77 and Ô are shown at the 
bottom of the drawing. The calculated points corresponding to 

= — 6, — 4, — 2, 0, 2, 4, 6 are fitted by curves with the further 
requirement of a given slope at 77 = 0 (determined from pertur
bation calculations, cf. above). The curves are labelled by the Q- 
number and the parity sign. The energy scale is ha>0 (<3); this ¿-de
pendent unit is chosen rather than the constant unit tiå)0 to sim

plify the drawing. What is plotted is —- = 1 + —-År ' •
/i(o0 \ 2/ w0(<5)

Notice, further, that flic true energy scale is different for nuclei with 
different A, as /îco0 may be assumed to vary with A as A-1/3 (cf.
p. 18).

pure

The bottom level, corresponding to £? = -+, which is a 

000 + )-state, is left out in Fig. 5 in order to save space.
15Of the iV = 7 states onlv the Q = — state has been calculated,
2

and thus one must expect additional levels in the diagram for 
energies above, say, 6.6 /ico0.

Added in proof: In the analysis of the empirical level spectra 
(B. Mott elson and S. G. Nilsson, Phys. Rev., in press) it has 
been found that an improved fit for the protons in the .V = 4 
shell is obtained by increasing slightly the value of 11. The cal
culations have therefore been performed also for // = 0.55. The 
results are given in fable lb. (The eigenvectors are normalized 

2*  
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such that Z ai 4 = 1 .) Ehe corresponding energy level diagram 
lA

is shown in the above reference. In this diagram z is chosen 
= 0.0613, compared to 0.05 in Fig. 5.

e. Discussion of the main leuel diagram.

Many of the features of the level diagram in Fig. 5 can be 
understood from simple considerations.

Thus, in the neighbourhood of spherical shape, the stales can 
be labelled by the I and j quantum numbers. The degeneracies 
corresponding to Ô = 0 are removed by the surface coupling 
term in such a manner that for a positive t) the energies increase 
with increasing Q. For negative ó the level order is the opposite.

With increasing deformation, the states of ditlerenl j and I 
(but the same Q and parity) are coupled together, and for inter
mediate deformations the situation may be rather complex, as 
seen from the peculiar variations with d of some of the energy 
levels.

For sufficiently large deformations, the situation again sim
plifies since for this case one may consider as a zeroth approxima
tion the levels of a pure (anisotropic) harmonic oscillator poten

tial and treat the 1-s- and 7-terms as a perturbation. In this 
limit the states may be labelled by the quantum numbers A’, nz 
(number of oscillator quanta along the r'-axis), M and Z.

The quantum numbers appropriate at large deformations can 
easily be assigned to the energy levels in Fig. 5 by noting the 
following rules. For the levels in the shell A’ the lowest stale of 
Q — 1/2, assuming positive deformation, has nz — X, the next 
has nz — X—1 etc., so that the highest D — 1 j'2 level has 
nz = 0 . Similarly for £? = 3/2 the lowest level has nz = X— 1 , 
the next nz = X—-2 etc. After the n2-values have been assigned, 
the zl-values can be simply obtained by noting that J is even 
or odd according to whether (A' nz) is even or odd. Since _Q 
is known, this determines A and Z uniquely.

As an example, it is in this way found that in the A’ — 5 shell 
the levels corresponding to nz = 0 for large positive deformations 
are the ones labelled 28, 48, 40, 70, 61, and A. It is also seen 
that all these levels tend to become parallel and to increase 
steeply with the deformation, corresponding to the fact that tor
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these levels the oscillations are in the plane of the small nuclear 
  —2

axes. At the same time it is apparent that the /-.s- and / -terms 
in the Hamiltonian, which are responsible for the spin-orbit

Fig. 4 a.
Figs. 4 a and. 4 b. Comparison of a perturbation treatment with the exact calculations. 

Energy levels for the X — 5 shell are plotted in units of xfico0 in Fig. 4 a 
for a deformation defined by 1] = 6 and in Fig. 4 b for a deformation 1/ = —6. 
The group of levels (a) represent the eigenvalues Eo of the pure oscillator potential

(ß) includes first order perturbation terms of l-s and / , while (y) shows the 
energy eigenvalues obtained by the exact machine calculations.

splitting, have still a very appreciable influence on the level 
order.

In Figs. 4 a and 4b the energy levels obtained by treating the 
- — —2
l-s- and I -terms as a perturbation are compared with the exact 
level spectrum for the AT = 5 shell in the case of the largest 
deformation considered in Fig. 5. To the left in Figs. 4a and 4b
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are the pure oscillator levels (a), while the levels (/?) include the 
- - _2

diagonal values of the Z’.s- and / -terms, which are calculated 
in Appendix B. The comparison with the numerically calculated 
levels (y) shows that such a first order perturbation calculation, 
for the very large deformations in question, reproduces the main 
trends of the level order, even though there are still a number of 
significant differences between the level spectra (/?) and (y). 
This is especially the case for negative deformations (cf. Eig. 4 b).
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III. Examples of Applications of Tables and Diagrams.

We consider below a number of the nuclear properties which 
may be treated by means of the calculation given above. It should 
be remembered that the essential condition, underlying all of 
the work in the present paper, is that the nuclear deformation is 
essentially larger than the fluctuations. This condition is found 
to be satisfied only for configurations far removed from the closed 
shells.

a. Calculation of total energy and equilibrium deformation.

The total energy of the nucleus is not the sum of the energies 
for each individual particle because, in that case, two-particle 
interactions would be counted twice, three-particle interactions 
three times, etc.

The expression to be used thus depends on which kind of 
interaction is postulated. Assuming only two-body forces, the 
Hamiltonian for the z : th particle is

H, = 'I\ +\', = Ti + Z Vil-

The Hamiltonian for the total nucleus, however, should be

s = Ar. + I 2% = + (15)
i - i, j - i - i

The total wave function of all the nucleons, describing their 
motion relative to the deformed potential, is the product of the 
wave functions for each occupied particle state, appropriately 
antisymmetrized. To find the total energy (í(ó) we then have to 
find the expectation value of with respect to the calculated 
single-particle wave functions.

The equilibrium deformation deq is now given by 

which gives the minimum total energy lfmin. The energy values 
are calculated with good accuracy for seven points on all the 
levels. As the levels cross, different combinations of levels will 
give the lowest total energy within different ranges of ô (or rf). 
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For each single combination ol' levels the energy minimum is to 
be found, e. g., from an interpolation formula utilizing several 
or possibly all of the calculated points corresponding to this 
particular level combination. The lowest minimum gives the 
ground state. Other minima, corresponding to other level com
binations, give particle levels of the excitation spectrum.

In this connection it should be emphasized that the total 
nuclear excitation spectrum will have three distinct modes. On 
each particle level, characterized by 42, there will be super
imposed a vibrational band, and furthermore on each level 
(including the vibrational levels) a rotational band. The level 
distance for heavy nuclei is for the particle spectrum of order 
100 KeV (see Fig. 5), for the vibrational spectrum of the order 
of a few MeV. Finally, the rotational energies depend on the 
nuclear deformation, but for heavy nuclei and large deformations 
they are much smaller than the vibrational energies.

To calculate the equilibrium deformation in the prescribed 
way it turns out to be essential to take the couplings between 
different iV-shells into account. This can be done, as pointed 
out on p. 13, by reinterpreting the machine calculations as per
formed in a slightly different representation, accompanied by a 
small change in the definition of the parameters (cf. Appendix A).

This coupling causes a slight repression of all the energy 
levels without affecting the level order. It thus amounts to a 
change in the whole energy scale (cf. (A4), (4), and (13)). 
Furthermore the scale factor is dependent on deformation.

The effect is important in decreasing the effective restoring 
force of the nucleus against deformation. The energy minimum is 
thus shifted towards larger deformations. An approximate ex
pression for the total energy (f, taking these effects into account, 
is given in Appendix C.

It should be emphasized that the determination of ôeq involves 
a number of simplifying approximations. Apart from the assump
tion regarding the shape of the nuclear potential and the two-body 
character of the interactions, we have neglected the effect of 
residual interactions between the nucleons not included in the 
average potential (as, e. g., the pairing energy terms).

However, in the application of the model an independent 
estimate of ô is obtained from the empirically determined
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quadrupole moment. Assuming a charge distribution in accord
ance with the Thomas-Fermi statistical model applied to the 
oscillator potential, one obtains to second order in d

Qo — 0.8-Z-7?¿ó- (1 +|ó (16)

where 7?z is to be taken equal to the radius of charge of the 
nucleus or Rz — 1.2 • 1()—13 • A1/3 cm. In obtaining this result the 
convention has been employed to put the mean value of r'2 for 
all the protons (cf. p. 18) equal to 3/5 R“z.

The relation between the measured quadrupole moment, 
denoted by Qs, and ()0 is given by*

3 7f2-7(7+ 1) 
(/+ 1 ) (2 7 + 3) k’ (17)

As regards the particle levels of the excitation spectrum, one 
cannot expect to obtain the exact level order and even less the 
correct energy differences between the levels. 'The diagram should 
tell, however, which level spins and parities are likely to appear 
in the lowest states of the spectrum.

b. Determination of ground state spin ((nd decoupling factor.

The component of angular momentum along the axis of 
deformation 72 is a constant of the motion for each particle. 
Q is given for each of the energy states drawn in Fig. 5. In the 
strong coupling limit the total 72 equals ^/72„. Each energy state 

p
is degenerate corresponding to ±72. If we have two groups a 
and b of equivalent particles —- neutrons and protons — the par
ticles of each group fill pairwise in the levels independently 
of the other group. If the number of particles in the group a is 
even, 72(l = 0, if odd, then 72a equals the 72p of the last unpaired 
particle.

If one of the groups is even, the case is simple enough for 
the ground state, 72 equals Qb, if b is the odd group. If both a 
and b are odd, the states with 72 — | 72rt dz Qb I are degenerate 

* BM (V. 6).
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in first order. The diagonal contribution of n-p-forces and the 
rotational energy decide which Q corresponds to the ground state.

It turns out that always the ground state spin of the nucleus

Zo = £? = A', except when Ï2 = -, in which case the ground 

state spin /0 is given from Table III once the decoupling factor 
a is determined.*  (See below.)

The decoupling factor a appears in the expression for the 

rotational energy for odd-A nuclei with L? =

-^rol
fl2
21

9

(18)

and is thus experimentally measurable. In the j-£?-representation, 
with quantum numbers I, s, j, Q, where is written 
yel<.r\Xljß>,
i

and it can be transformed to the Z-A-representation with quantum 
numbers l, s, A, X, where ^/l <I N/(s) A27>, by
means of the relations A^E p

ci = X <lr>AS\'^jß> alA-

AX - -

In the Z-A-representation then

« = (-)'2’(«<o +2 l/ñT+l) , (19)
I

where ( — )z is the parity of the state in question, and where 
the coefficients alA are, as before, the representatives of the 
particle wave function in the | NlAX ^representation. The

♦ Cf. BM p. 30. Table III is based on BM (11.24). Io is determined as the half 
integer spin I which gives the minimum rotational energy Wrot-

** See A. Bohr and B. Mottelson “Collective Nuclear Motion and the Unified 
Model”, Chapter 17 of “Beta and Gamma Ray Spectroscopy” edited by K. Sieg
bahn, North Holland Publishing Co. (1954).
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values of a¡ ¡ for the calculated eigenstates are the same as the 
coefficients listed in Tables I, apart from a different normalization 
(cf. p. 18).

c. Determination of magnetic moments.

We next consider the magnetic moment for an odd-A nucleus 
in which all the particles except the last one fill the different 
orbits in pairs. The generalization to configurations in which 
several particles move in unpaired orbits is straightforward.

By definition, the magnetic moment expressed in units of the 
nuclear magneton is

U - —------------ ,A 7+1
where

Ä°P = 9 + + 9 i¡ + 9

and R is the angular momentum of the surface.
Using y = j 4- $ and j + R — I we can write g as

= — 9/) < * ’ j > + <9i — 9r) <j‘i> + 9n< 72 >]. (20)

Here is given in the /-^-representation of BM.*  It
can be written

</■/> = + + (21)

where the Z-zl-representation of a is given directly from (19).
For < s-I) it is more convenient to use the Z-zl-representatioii 

from the beginning. The part of the wave function (1) which is 
written (—)/~J y & has the meaning \ cfyJ Q. In the

7
/-Z-representation then

+ ~A -?>■ (22>
/ I AZ

One obtains

* BM 11.18.
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<s-7> (23 a)

1). Specializing further

(23 b)

s

(24)

simplifies to

1
4

Turning now to a, we first consider
(20), (21), and (23) one obtains

which for / = Ï2 — K

(where we have utilized (aR) 4- ufj ) = 
i

to a state of odd parity,

[1 +(-)']
2 i

the case Q From9

I = -, (23) simplifies to

b (</i — (ht) &K + gR / ( / -r 1) j,

For the case -Q = K —

= jL j j (V.s — .7/) I 2?(«Lq_ 1/2 — , 1/2) + f// 1 + 91< | ■ <24 a)

It may be pointed out that (24) can be rewritten in the form
ally simple form

where

9o = \ffs < sz’ > + 9i < b- >/ •

(24b)

(24 c)

For the case Q = K = — (when some extra terms enter due
2

to the symmetrization of the wave function) equation (24) is 
somewhat modified
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1
/Ti

+ (¡7/ — g b)
(25)

where a is given by (19). For free nucleons one has gs =
and = {()) for protons and neutrons, respectively.

; 5,5851
3,826'

Under the

assumption that the rotational motion can be described in terms 

of an irrotational flow of uniformlv charged nuclear matter, ql{ —
"1 .A

For the case I = Í2 = K = - and odd parity, when (s-/>

according to (23b) is independent of the internal wave function, 
(25) simplifies to

= 3 ~~ 9r) + r// + 9li (26)

which means that, for this particular case, there exists between 
the quantities ft and a relation that involves only the gyro- 
magnetic ratios gs, gt, and gI{, but not the nucleonic wave 
functions.

c. Determination of electromagnetic transition probabilities.

The electric and magnetic multipole operators in the space 
fixed system (.r", y", z") are given by*

C a /') ( 2 / a )

-X. (Â, /<) = 27 • Vp [rf; Y}ll (d'', qy')]

+ 9,< $ ’}{v d r ■
(27b)

The first terms in the expressions represent the transition 
moments of the most loosely bound particles which can be

* BM (VII. 5, 6).
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individually excited (thus the sum over p is to be taken only 
over the transforming nucleons), while the last terms represent 
the multipole moments generated by the collective motion of the 
nucleus. The recoil effect of the nuclear core (important for 
dipole transitions) is included in the particle part of (27 a).

The term a! in (27a) is the Hermitian conjugate of the 
coordinate describing the deformation of the nuclear surface in 
the coordinate system fixed in space.*  7?0 is the nuclear radius. 
As regards the collective part of the magnetic multipole operator, 
Ûi (r) is the collective angular momentum density, and one has 

í)i (r) dr — ft. This part is in general difficult to handle, except 
in the case X = 1 . In that case, it can be incorporated into the 
first term simply by changing gs to gs— gR and g, to g¡—- gR.

* AB (1).
** Cf., however, G. Alaga, K. Alder. A. Bohr, and B. Mottelson (Dan. 

.Mat. I-ys. Medd. 29. no. 9, 1955). In this paper, the authors take into account a 
small decoupling of the rotational from the intrinsic motion, leaving ß only 
approximately a constant of the motion. This effect may render the collective 
term of (27 a) important for certain particle transitions, particularly of E2 type.

*** BM (\‘11.1). cf. also .1. M. Blatt and V. b. Weisskopf, Theoretical Nuclear 
Physics. .J. Wiley and Sons. New York (1952). chapter Nil.

For the strongly deformed nuclei one can distinguish between 
particle transitions which are associated with a change in the 
intrinsic wave function and collective transitions which leave 
the internal particle structure unaffected. Of the collective tran
sitions those that have been most studied are the rotational 
ones which leave 9?vib unaffected and only change the rotational 
state T of the system.

The intrinsic structure /q affects the transition probabilities 
for particle transitions and for rotational transitions of M 1 type. 
We shall in the following limit ourselves to those cases. We can 
then simply leave the last term of (27a) out of consideration 
since it is effective only in collective transitions (and we shall 
not consider rotational 1£2 transitions)**.

It is useful to introduce the reduced transition probability

B(Å, /-*/')  = | < Ï2', I'K'M' I 9.1Í" (Â,//) |£>, //¿U> |2. (28)
/'-V'

The probability for a y-transition with a frequency co, where ha> 
is the energy difference between the initial and final state, is then***
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T (Â) = (Â + _l)_l/«i2z+1
2 [(2 2+l)!!]2/i\c/ Ç } (29)

B (EX) also enters the expression for the EÅ Coulomb excita
tion cross sections*.

* BM (Ap VI.17, 18).
♦* Cf. G. Alaga et al., loe. cit.

As pointed out, the coordinates x" etc. in (27 a, b) refer to a 
coordinate system fixed in space. It is convenient to transform 
the multipole operators to the coordinate system fixed in the 
nucleus

SB" (A, /<) = (0¡) SB' (A, r), (30)
V

where is of the same functional form as but depends on 
the new coordinates x'. The functions T, depending on the Eule- 
rian angles 0¿, are the same as those used in (1).

In the matrix elements in (28) the integration over the Eule- 
rian angles can now be performed and the summation over // 
and M' can be carried out.**  One then obtains

B (2, I I') = I < IÀK K' — K I IM'K' > ( G» K' ~ K) %QdT
•/

-<IÅK —K'—K IIÅ I' - K' > ( X- <2'1 ’ æ G. - K' - K) XndT
(31)

The second term contributes only for the empirically rather 
unusual case À > K + K'. In evaluating B (2), we have used

jj ®M-K- + I HFM' > < UK, I IÅI'K' >, (32)

where dEE signifies integration over all three Eulerian angles.
We shall later need the closely related formula

^A'Yh,V>AdS¡2 = |/(2^(2/'2+l)1^ aAV I ,U'A' > < ° ° I IU' ° > <33>
Equation (10) is a special case of (33).

It is of advantage to make the transformation to dimensionless
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2 2+1

(34

where

(34 a)

2 2 2+1
4 7T (35

■\{IÅKK'

where

A7>
(35 a

</20 O | IÂI' O >
(35 b)

2 2—1

r2

The same formula holds for 5-(7 rAV;r) with .s__ exchanged for /_ 
etc.

For particle transitions due to electric multipoles, we can 
write

B(EÂ, I-~ I’) = e«( 1+ (-)<*  +

* Cf. H. Bethe, Quantenmechanik der Ein- und Zwei-Elektronenprobleme, 
p. 559, Handbuch der Physik, XXIV/1, Berlin (1933). Note, however, our different 
choice of phases which agrees with that of E. U. Condon and G. H. Shortley, 
The Theory of Atomic Spectra. Cf. also M. E. Rose and R. K. Osborn, Phvs. Rev., 
93, 1322 (1954).

Æ|Z2Z'â"> + +.,’¿(—)7'~ a"</2A.' _A"_

+ _ >'2 A X“1h- !, +1 |/(A - v)(2— v—1 ) 

-l|/(A + r)(A+>.-l)Z+ r'-'Y;._,

= y<.V7'|/|A7>|/2-'±1~ 1 1 I' 2 /' + I

• I«. Z’/27 al'A' al A < UAK'—Z<| lÅl'A'y 
A'AZ'Z “

/)
variables (6). This gives a factor ------ for the electric multipole

hl/coo,/
/ h 1

operator and a factor — 2 for the magnetic multipole opera-
\Mo)01

tor when r' is replaced by r.
The operator 7 • ( V rz T;r) can be rewritten*

GeA _
i'i
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For transitions due to magnetic multipoles we shall for X > 1 
omit the last term in (27 b), which is expected to have a relatively 
minor influence. One then obtains

(MX, Æ'—Æ|n/7T>

+ bMn(-)r + K\lÅK -K’-K\IÅI' -K'^GÏh,
where

K- + 1/2 + r

GHi
£<N'l'\

1’1
|M><za-ioo|u-iro>|/||±l.

aÎA'alA
'AZ'Z

A(ç)d_2;;2;(—l/lg|ZÂ—1 Z' -Æ>

+ B(q) ô , îô 1< IX — 1 J 7 + 1 I IX — 1 /'—+'>
’ 2 2

— C(q)ô id 1< l X — 1 A q — 1 I IX— 1/' —Æ> 
2,1 2 20 2

A(q)-(— 2Æ)< IX— 1 + ç| IX— 1 /'—zl'>

+ ß(g)p/(z' + zi/)(r—z' + i)</a—1ZI7 + 1 \ix—1 r —æ + i> 

- C (q) [/(Z' — A') (I' +A' + 1)< IX— 1 A q — 1 I I X — 1 Z' —A' — l >

Gmà = ¿’<N'Z'|/“î|A7><ZÂ —lOOlZÂ—1 Z'0> 
ri

[ 2 l + 1 y
2 ï +1 a'az'z al'A'alA A(k)ôr I X—l Ak\l X—ll' A')

+ B (k) ô , _i ô i< I X — 1 A k+ 1 \I X— 1 l'A' >

— C(k) ô 1Ó y_i_<lX— lAk— 1 I IX— 1 l'A')
’ O ■2-z ’ o

A (¿)-2d'< IX— 1 A k IX— 1 l'A') 

+ B(À)pz(Z' —A') (/' +A' + 1)<ZÂ — IA k+1 I IX — 1 Z'Z' + l >

— C(k) /(Z' ++') (/'—A' + 1)<ZÂ— lAk — I A —1 l'A'—l >]

(36)

(36a)

(36 b)

Dan. Mat.Fys.Medd. 29, no.16. 3



34 Nr. 16

and where in turn
a (>) = i/'K-

Il (V) = |/(A-

- V2 (36 c)

(36d)- 1’) (Â--- V ---- 1 )

CO) = |/(A-F v) (Å + V — 1) (36 e)

k = K’ — K (36 f)

q=—K' — K. (36 g)

For Z = 1, as pointed out above, we can easily handle the 
last term of (27b) and incorporate it in the first term. All the 
expressions derived for z > 1 are then valid if gs is replaced by 
(9s — 9r) an(1 9i by (9i — 9r) everywhere.

For Ml transitions within one rotational band, equations (36) 
simplify greatly, and one obtains

Gy/1 = (g_Q — 9i<) (37a)

Further, Z>A/1 is different from zero only if £? = /< = -. (For this 

latter case we denote byi{ by Z?o|/2 and GAil by Go.) One has

—! (& — '//<) «H) + (9i~ 9i<) y \ I (I + l)«zo«zi 1- (37 k

9.0 — 9n 1 1 1 I
file reduced transition probability for a transition of this 

kind from a level /' + 1 to a level V (both belonging to the same 
rotational band) has then the simple form

(37 c)

For a rotational band with Q = -, we have given expressions 

for the four measurable quantities a, g, G’o, and Z?o in (19), (25), 
(37 a), and (37 b), respectively. As the dependence of the internal 
wave function on all these quantities is contained in the expressions 

and 5? [// (Z + 1 ) «/o a/i> it is apparent that between a, [i, 
~T i
Go, and Z?o there must exist relations that are independent of the 
nucleonic structure.
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We have already found such a relation between a and g for

7 = 72 = Æ = - and odd parity, in which case formula (26) holds.

One can further for this case derive the second relation

2 b0G0 = Go — 2 (g¡ — gR) a + gs — 2 gi + (38)

For the case I = Q = 
responding relations are

K = two cor-

Go = 3 /z — a 0, — gR) —-gs + gi — 2 gR

and

3 + « (& — 9r) + Tgs — gi — gR •

(39)

(40)

For the case I Q — K = -, one can also establish relations 2
of the same kind as (39) and (40).

The radial matrix element < N'l' | rz | Nl ) is given by the 
formula*

< N'l' r}-1 Nl > = F(n + l)F(n +1) 
r(n + i — V + r(n + t — / + 1)

F(/ + cr + 1)
o ! (n — cr)! (nz — a)! (cr + v— n)! (a + v' — n')l ’

where

„ = l(V-l)

n' = l(.V'-0

»' = !(/-/' +A)

(41a)

(41b)

(41c)

(41 d)

* See, e. g., P. Morse and H. Feshbach, Methods of Theoretical Physics, 
McGraw-Hill (1953), p. 785. The extra phase factor appearing in this reference 
is due to the fact that | ~ (—)" | -^’Ohere- Formulae (11 a-e) are given
from (41) for 2. = 2.

(41)

3*
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t = 1(! + l' + Â + 1), (41 e)

and where the condition on the summation variable a is

n n — V
> a >

n n — v'.
(42)

This means that cr has to be smaller than or equal to the smallest 
of n and n etc. If this condition cannot be fulfdled by any a, 
the integral vanishes. An equivalent necessary condition (ex
pressed in N, I, and z) for the matrix element of rz to be different 
from zero can be formulated as

/ + Â >/'>/ — Â (42 a)

N + Å> N' > N — Å. (42 b)

e. Determination of ft-values for beta transitions.

As it is the purpose of this paragraph merely to illustrate the 
application of the strong coupling wave functions in the field of 
beta transitions, we limit ourselves to considering only allowed 
transitions and a select group of forbidden transitions, namely 
those which imply a parity change of (—) ù7‘rl (with I # 0). This 
latter group is of a pure Gamow-Teller type.

The treatment of /^-transitions is similar to that of y-transitions 
and it is useful to introduce the concept of reduced transition 
probability*  defined in analogy to (28)

DP(zi) = rM'K'\^F{n,^\Q,IMKy\2. (43)
GT GT

Here (n,/z) is the Fermi respectively the Gamow-Teller 
GT

transition operator, and n is the degree of forbiddenness, 
n = d/— 1 .

The comparative half lives or the ft-values can now be 
defined in terms of these reduced transition probabilities.

See BN, chapter VIII.
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For allowed transitions we can write

f„l = Bg [<1 -x)fiF(O) + .t/Jgt(0)]-1, (44)

where t is the half life, f0 the integrated Fermi function for allowed 
transitions, g (1—x)1/2 and gxx>2 are the Fermi and Gamow- 
Teller coupling constants, and the constant Bg is given as

B9

2 %3/i7//z 2
g2 m'(! ei

(45)

For forbidden transitions of the particular type considered 
here (parity change = (—)' + 1 etc.) one has

/„/ = [xZ)GT(n)J \ (46)

where fn is the integrated Fermi function corresponding to the 
order of forbiddenness n [for definition and normalization see 
BM (VIII.6)].

It turns out that DGT (n) has a structure very similar to the 
reduced transition probability for a y-transition of the magnetic 
multipole type with A = n + 1. The corresponding operator is 
defined as

= SWZ’„-7pW + ,>'. + 1/1(#rft)] r'i, (47)

where
4 ti 2n + 3l1/2 [(n + l)!]2/mcin 
(2 n + 3)1 J ÏT+Ï 'T/ (47 a)

In general the sum over p is to be taken over all particles involved 
in the transition. We restrict ourselves, however, to transitions 
between odd-A nuclei with only one unpaired particle which 
then undergoes the ^-transition. t+ and t_ are the isotopic spin 
creation and annihilation operators, transforming a proton into 
a neutron, and vice versa.

By formally putting gs = 1 and (p = gR = 0 in (27 b) we 
obtain exactly the above expression apart from a multiplicative 
numerical factor and the isotopic spin operator. Making this 
formal change we can then use formula (36) of the preceding 
paragraph for calculating DGT(n). Thus,
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(Zí) = S (ii)21 1 2 zi + 3
4 4.7

• I < I n + 1 K K' — K In + 1 /'A' ;

+ ßn + 1 (-)r + K' + \ K -K'-K I / n + 1 I' - A" > |2 !

(48 a)

where
(48 b)Vn + 1

(48c)

case of mirror transitions, this simplifies toI7or the

where
9 (48e)

9 (48 f)

^7 (0) = |</1 2yb (48

|/ 2 f/Z0 ^.Q, 1/2 1/2 •

Finally, in this same case, the Fermi part 7)F(0) is simply

7Jf(0) = > I < Q, IM'K I r'l I Q, IMK> |2 = 1. (49)
M'

Collecting the 
odd-A nuclei

terms, we can write for mirror transitions in

1 +/ii(-)/ + 1'2|/2(l + l (50 )

where Bg is given by (45).
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V. Appendix A.

Use of an Alternative Representation.

In the diagonalization of the Hamiltonian (2), cross terms 
with different total quantum number N have been neglected. It is 
possible, however, to obtain an improved solution by making 
a small change of representation and in this manner to exhibit 
in a simple way the effect of the neglected non-diagonal terms in Ar.

Starting from (2) and (2 a)

H = H0 + CUs + Dl (A 1)

Ho =a-^y'2 + z,¿), (Ala)

we make a slight parameter change and define e and a>0(£), 
differently from Ô and <z>0(0), as

(A 2 a)

(A 2 b)
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The following relations hold between the old and the new
parameters

e = <5 + 1(52 + O(ô3)
6

(A 3)

co0(e) = ¿o0(ó(£)) 1 — 1 e2 + O(e3)
9

+ le2+O(£3) (A 4)

We further perform a coordinate transformation

, ,1/^x

f = X I7 —

Ho is then separable in £, t] , £

where
Ho — Hç + Hfj + H--,

Hi = + etc-

(A 6)

(A 6a)

For later use a note should be made at this point that a repre
sentation that obviously makes Ho diagonal is | nt ) | n„ > | nt >, 
where | nç > is defined by

Ht | > = ( 7+ + -\ Îî Mx I . (A 7 )

We proceed, however, to split Ho in a manner analogous 
to (7)

H0 = H0 + He, (A 8)
where

n„ = + e2) (A 8 a)

(A 8b)
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and
o2 = £2 4- r/2 + C2-

In conformity with the new coordinates £, r¡, £ introduced 
it is useful also to introduce an operator I, defined analogously 
to 7 as

etc- <A9>
(We denote the component by (lt)r instead of (lt)ç to emphasize that 
the directions of the new coordinates coincide with the old ones.)

• °We now introduce a representation which makes Ho diagonal 
_2 _2

together with (7,)z and lt , sz and s . The eigenvalues of (7Z)Z and 
_2
I, are denoted as At and I, (lt + 1).

Thus,

H0\NtltAtZ> = hco0l(-A^+62)\NtItAt^

- IM + -J wo I •
(A 10)

We rewrite (A 1 ) in the form

where

and

H = + Hpert,

H, = Ho + He + Clt -s + irf 

Hpert = C(7-7z)-s + L>(/2-6).

(A 11)

(Alla)

(A lib)

By using the identity

d2 d2 . d2 
d£2 + 'dr¡2~¿d£2 = 1 [A , [A , £2 + r¡2 — 2 C2]]

o
and exploiting (A 10), one can show that

ov,’z;j;2" i hJn,

= t>N N.< n,/;42-11 £/><»„ (F + 2 f2) I
t < «3

(A 12)
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The fact that He has vanishing matrix elements between 
states of different Nt can also be seen from (A 8b), (A 6a), and 
(A 7), remembering that the | A) lt At >-vector is a particular sum 
of J nt y J ) I nt ) product vectors with nt + n^ + nt = A).

It follows now that Ht has the same matrix elements in the 
I A)ltAt£ ^-representation as H has in the | A7/l¿7 >-representa- 
tion apart from, first, the change of parameters (e and co0(e) in 
the former representation and <5 and co0(0) in the latter one) and, 
secondly, the fact that the matrix elements of Ht between states 
with Nt differing by two vanish identically in the | Nt l(At X ^repre
sentation.

The next step is to investigate the effect of the ffpert-term. The 
three /-components l+ (= l__ ( = lx — il,,), and I. may
be transformed as follows

and where the operators f+ and /L can be conveniently written
in the form

(A 14a)

/L = I [J, + f (f-<»/)] = . (A 14b)
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Here U2Í the normalized spherical harmonic of order 2,1, 
expressed in the angles of the coordinate system £,??, C •

From (A 10) and (14a, b) one finds

Next, using (13a, b) and expanding in powers of e, one can 
show that

H,)ert = + £2H2 + • •
where

+ fs. ) _1 ö ' (/,)_ f,. + f_ </,)+ )

and
= 16C{ + r)(f+s- + f-s+) j

j co- (o+ + f-f--[(O-A- + r-(o+] j •

(A 16)

(A 16a)

(A 16 b)

Now it follows from (A 15) that the matrix elements of eHx 
between states of the same ATZ vanish. On the other hand, eHx 
causes a coupling in the | 2VZZz/lz2?^-representation between states 
differing by two in their 2Vrvalue of formally a very similar 
kind [cf. (A 15) and (7 b)] to the coupling caused by H() in the 

2X7/127^-representation between the 2V and AT + 2 shells. An 
estimate of the sH1 coupling terms shows, however, that their 
order of magnitude is only 1/10 of the coupling terms, or
something similar to the ratio of the matrix elements of the l-s- 
and /2-terms to the matrix elements of Ho.

The second order terms in (A 16) amount only to the order 
2

of a per cent of the total ~l-s- and I -terms and arc therefore 
negligible.

By interpreting the representatives Az p listed in Table I, as 
being representatives A¡ j of eigenfunctions in the | ArzZz/lz27>- 
representation, one should thus obtain an improved approxima
tion.

The uncorrected more simple eigenfunctions are, however, 
used in the main part of this paper since they are sufficiently 
accurate for most of the applications. Thus, the matrix elements
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for operators as y and a and those involved in M 1 transitions, 
which all contain exclusively I and s, are affected only to the order 
g2 by the change in the wave functions. Moreover, the correction 
term of this order involves a small coefficient [cf. (A 13 d)] and 
is therefore of little significance. The situation is somewhat 
different for operators like the quadrupole moment and E‘2 
transition operators, and in an estimate of matrix elements of 
these quantities it may sometimes be important to use the im
proved representation.

Finally, it may be added that, apart from the smallness of 
//pert, it is even questionable which Hamiltonian H or Ht best 
describes the nuclear conditions.

The /-s-term for the nuclear case is modelled after the spin
orbit coupling term for an electron moving in an electrostatic 
field. 'Phis term is of the form s-(t»Xgrad V) which only for an 
isotropic potential reduces to l-s. For a deformed oscillator 
potential, the difference between such a coupling term and the 
/•s-term is of the same order of magnitude as the difference 
between l-s and lt-s.

_2
Similarly for the / -term, which is thought of as a correction 

at larger distances for the too fast rising of the oscillator walls, 
there is no reason to assume a spherically symmetric correction 
when the oscillator potential itself becomes eliptically deformed.

Thus, it appears that the effect of Hpert lies entirely within
2

the range of ambiguity in the definition of the l-s- and / -terms 
for the deformed nucleus.

Appendix B.

Asymptotic Solutions in the Limit of Very Strong Deformations.

The notation and parameters used in this section are identical 
with those employed in Appendix A.

We first consider the Hamiltonian Ho (Ala) containing only 
kinetic energy and oscillator field terms. It follows from (A6, 
A 7) that the energy eigenvalues corresponding to //0 are of the 
form
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¿o — í nç + I 4" 4- 4“ 1 ,

which can be rewritten in terms of the deformation parameter e 
[cf. (A 2 a, b)]

(Bl)

where n± = + n^. The energy eigenvalues in units of h w0 (e) ,
plotted as functions of e, are then straight lines. The corresponding 
eigenfunctions are | nt > | nr. > | n> >.

Such a level characterized by n^ and n± is degenerate to 
the order n± + 1 (number of combinations of and n„ that 
fulfil 4- nr¡ — n±). To this degeneracy is then added the spin 
degeneracy.

We further introduce linear combinations | n±A > of base 
vectors | n^ > | n7¡ > (with nç + n„ = n±) such that

[(Ze)« — A] I ^4 > = 0.

The vectors | n^ > | n±A ) | 27 > form a complete set, and Ho 
is further diagonal in such a representation. Here /I = ± 1 , 
± 3, . . ., ± n± if n± is odd, and = 0, ± 2, . . ., ± n± if n± is even. 

_ _ _2
We now consider elements of lt-s and lt in this representation. 

As before, we can have coupling terms only between states of the 
same Q and N (= + n±). Apart from diagonal elements, non
vanishing matrix elements of ~lt-s occur only between states 

o
differing by one unit in A and n±. As regards lt, this operator is 
diagonal in A and has non-vanishing elements only between 
states with n± equal or different by two.

The diagonal elements of lt’s are given immediately as

< nç nL A X \ lt-s I nç n± A X ) = /I 27. (B2)

Employing operator relations of the type used in Appendix A, 
one can show

\ nç n± A S I 72 I nç n± A X > = H2 4~ 2 n± 4~ 2 rt^ 4- • (B 3)

Figs. 4 a and 4 b give a comparison of the energy levels of the 
TV = 5 shell by perturbation treatment and exact calculation, for
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the largest deformations calculated in the numerical treatment. 
The level group («) corresponds to the harmonic oscillator levels 
(Bl) while (ß) employs the diagonal terms of (B2) and (B3). 
Finally (y) shows the exact levels.

These asymptotic solutions corresponding to the ! lyAZ)- 
states may be of interest in providing new approximate selection 
rules for particle transitions in this region of deformation, con
nected with the occurrence of the new constants of the motion 
7)± and X.

Appendix C.

The Total Energy as Eunction of the Deformation Parameter.

We shall here evaluate the expectation value of the total 
energy Hamiltonian .£), defined by (15), employing the notation 
and results of Appendix A, i. e. taking into account the effect 
on the wave functions of the coupling between shells characterized 
by different .V-values. We write

The eigenvalues of W, are just the calculated single-particle energy 
eigenvalues Et. Separating out /-dependent terms of the difference 
F¿ — T¡ we (*an  write

(CO

where in the notation of Appendix A (dropping the index i)

\V = h wx
d2 _ d2 d2
d£2 dr/2 1 + h w: — + C2 d£2 J (Cl a)

U = Cl-s + D T - C lt’si I) (Clb)

Noting that the single-particle wave functions can be written 
as linear combinations of | nç > | )> \n^y, with the require
ment nt + — Xt, it follows immediately from the virial
theorem for one-dimensional harmonic oscillators that

< Wf> = 0. (C2)
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Figs. 4 a and 4 b further demonstrate that Ui is approximately 
diagonal at the largest deformations with respect to the wave 
functions which are appropriate at these deformations. The ap
proximate expectation values of can be calculed from (B2) and 
(B3). To the extent this approximation is valid, is independent 
of the deformation.

Using the equivalent of formula (13) (employing £ instead 
of ô) and formula (A4), one finally obtains *»  ** 

(£) = £ jzL 4- -j | 1 T - £2j -j- xi'i (e)| + >. (C 3)

The equilibrium deformation Eeq is then obtained by solving

W(£) = ()
ÔE

The relation between the deformation parameters £ and ô, 
employed here and in the main text, respectively, is given by (A3).

* A correction to (C3) is obtained by considering the diagonal terms of the 
neglected Coulomb interaction between the protons. This effect will tend to 
increase the equilibrium deformation. For, e. g., a homogeneously charged el
lipsoid of an average radius Ho one has to second order in e

3ZV/ 4 \E ,=------1-----------e2 .
<>z u Eo \ 45 /

(Cf., e. g., N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).)
The independent term is negligible for the lighter nuclei, and even for nuclei 

around A = 200 it does not amount to more than 10 per cent of the “surface 
tension” term (second order term) in (C3).

** Note added in proof: It is possible to estimate the effect of the residual 
interactions by employing the two-nucleon model used by A. Bohr and B. Mottel- 
son (I)an. Mat. Fys. Medd., in press). These interactions tend always to reduce 
the deformation from that calculated for completely independent particle motion 
as above. The effect becomes less important for increasing deformation. For 
£ = 0.3 and a strength of interaction v = 0.3, as defined in the above reference, 
the equilibrium deformation is reduced by 10 per cent. (Private communication 
from B. Mottelson.)
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Table I. Eigenvalues and Eigenfunctions for the Deformed Eield.
X = 0 Í2 = I

eigenvalue: r 0, eigenvector: | 000 + )>.

X = 1

eigenvalue: r Hl +>•eigenvector :

?; = — 6 — 4 — 2 2 4 6

2 — 3.000 — 2.333 — 1.667 — 0.333 0.333 1.000

X = 1

base vectors : | 110 + )>, | 111 — )>.

'/ -6 — 4 — 2 2 4 6

4
4.372 3.228 2.333 2.228 2.706 3.275

1.000 1.000 1.000 1.000 1.000 1.000
— 0.263 — 0.397 — 0.707 — 2.518 — 3.798 — 5.144

3
- 1.372 - 0.895 — 0.667 - 1.895 — 3.039 — 4.275

1.000 1.000 1.000 1.000 1.000 1.000
3.798 2.518 1.414 0.397 0.263 0.194

2
-1] — 2, eigenvector: 222+ >.eigenvalue :

?; = — 6 — 4 — 2 2 4 6

5 — 6.000 — 4.667 — 3.333 — 0.667 0.667 2.000



Nr. 16 49

base vectors: | 221 4- \ | 222 — >.
2

rj = —ti — 4 — 2 <2 4 6

2.000 1.895 2.228 4.035 5.198 6.424
8

1.000 1.000 1.000 1.000 1.000 1.000
— 0.500 — 0.781 — 1.281 — 2.851 -3.766 - 4.712

— 3.000 — 2.228 — 1.895 — 2.368 — 2.865 — 3.424
7

1.000 1.000 1.000 1.000 1.000 1.000
2.000 1.281 0.781 0.351 0.266 0.212

X = 2 ß =

base vectors: | 220 4-), | 200 4- | 221 —

7] = — 6 - 4 __ 2 2 4 6

8.719 6.379 4.368 ' 2.630 3.298 1.394

11 1.000 1.000 1.000 1.000 1.000 1.000
0.649 0.591 0.432 — 0.717 — 1.143 - 1.287

- 0.428 — 0.605 — 0.907 - 1.066 - 0.675 - 0.454

2.568 1.693 0.667 0.120 — 0.237 — 0.853

9 1.000 1.000 1.000 1.000 1.000 1.000
2.203 2.227 2.828 - 15.696 15.901 6.635
5.672 3.827 2.449 11.489 — 25.472 — 16.609

— 4.287 — 3.072 — 2.035 — 3.751 — 6.069 — 8.542

6 1.000 1.000 1.000 1.000 1.000 1.000
— 1.319 - 1.227 — 0.927 0.503 0.622 0.662

0.336 0.453 0.662 0.600 0.428 0.325

Tj — 7.2, eigenvector: | 333 4- )>■eigenvalue: r

= — 6 — 4 __ 2 2 4 6

10 — 13.200 — 11.200 — 9.200 — 5.200 — 3.200 — 1.200
Dan. Mat. Fys.Medd. 29, no.16. 4
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base vectors: | 332 + 3, | 333 — >.

7/ = —6 — 4 — 2 2 4 6

— 4.200 - 3.200 — 1.828 1.572 3.424 5.321
15

1.000 1.000 1.000 1.000 1.000 1.000
— 0.817 - 1.225 1.785 3.173 3.929 4.703

— 9.200 - 8.200 — 7.572 - 6.972 — 6.824 6.721
I J

1.000 1.000 1.000 1.000 1.000 1.000
1.225 0.817 0.560 0.315 0.255 0.213

base vectors : | 331 + 5, | 311 + )>, | 332 — )>.

r/ = —6 - 4 __ 2 2 4 6

3.058 1.614 0.483 0.381 2.091 3.967

19 1.000 1.000 1.000 1.000 1.000 1.000
0.574 0.560 0.473 - 1.816 2.300 — 2.322

— 0.601 — 0.829 — 1.178 — 1.225 — 0.737 — 0.513

— 3.054 — 3.124 — 2.765 - 1.129 1.319 1.491

16 1.000 1.000 1.000 1.000 1.000 1.000
2.137 3.280 11.837 2.543 1.585 1.416
3.703 3.421 5.599 — 2.953 - 3.590 - 4.460

— 9.104 — 7.590 — 6.819 - 8.352 - 9.872 11.576

13 1.000 1.000 1.000 1.000 1.000 1.000
— 1.262 — 0.917 — 0.408 0.204 0.303 0.356

0.458 0.587 0.685 0.514 0.412 0.337
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.V - 3 û = 1

base vectors : | 330 + \ | 310 + )>, | 331 — >, | 311 — )>.

r¡ — — 6 — 4 — 2 2 4 6

10.824 7.100 3.594 2.512 4.265 6.126

26 1.000 1.000 1.000 1.000 1.000 1.000
1.460 1.518 1.650 — 1.495 — 1.161 — 1.049

— 0.474 — 0.620 — 0.854 — 1.554 — 2.053 — 2.587
— 0.307 — 0.449 — 0.823 4.547 5.248 6.244

3.620 1.779 0.257 — 1.636 — 2.151 — 2.373

20 1.000 1.000 1.000 1.000 1.000 1.000
— 4.476 — 3.201 — 1.730 — 0.645 — 0.926 — 0.950
— 8.469 — 4.424 — 1.803 — 0.837 — 0.468 — 0.300
— 4.959 — 2.482 — 0.379 — 0.718 — 0.578 — 0.444

— 2.465 - 2.012 — 1.275 — 3.480 — 5.829 — 8.066

17 1.000 1.000 1.000 1.000 1.000 1.000
— 0.539 — 0.379 0.328 7.020 5.302 5.955
— 0.030 — 0.136 — 0.197 — 4.641 — 6.453 — 10.375

0.740 1.134 2.076 0.503 — 1.542 — 3.458

— 7.779 — 6.666 — 6.376 — 9.196 — 12.086 — 15.487

14 1.000 1.000 1.000 1.000 1.000 1.000
— 0.582 — 0.484 — 0.303 0.359 0.637 0.809

1.432 1.088 0.918 0.777 0.632 0.500
— 1.718 — 0.912 — 0.347 0.164 0.198 0.183

 9
-V = 4 O - -

4
13, eigenvector: I 444 + >.eigenvalue: r =

r¡ = — 6 -4 — 2 2 4 6

18 — 21.000 — 18.333 — 15.667 — 10.333 — 7.667 — 5.000

7
N = 4 ß = -

2

4*

base vectors: | 443 + )>, | 444 —)>.

T] = — 6 — 4 — 2 2 4 6

25
— 10.628 — 8.632 — 6.392 — 1.518 1.018 3.589

1.000 1.000 1.000 1.000 1.000 1.000
— 1.192 — 1.662 — 2.219 — 3.470 — 4.131 — 4.804

21
- 16.372 — 15.035 — 13.942 — 12.148 - 11.351 — 10.589

1.000 1.000 1.000 1.000 1.000 1.000
0.839 0.602 0.451 0.288 0.242 0.208
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base vectors: | 442 -j- >, | 422 4- )>, | 443 — )>.

.V -= 4 O = f

= — 6 — 4 — 2 2 4 6

— 3.373 — 3.871 — 4.087 — 2.217 0.277 2.838

31 1.000 1.000 1.000 1.000 1.000 1.000
0.552 0.558 0.517 — 3.610 - 3.561 — 3.352

— 0.809 - 1.081 - 1.451 — 1.201 — 0.757 — 0.547

— 9.282 — 8.360 — 6.780 — 3.855 — 3.470 — 3.008

27 1.000 1.000 1.000 1.000 1.000 1.000
2.465 5.272 90.857 1.119 0.946 0.914
2.918 3.646 33.064 — 2.532 — 3.127 — 3.773

— 15.045 — 13.469 — 12.833 — 13.628 — 14.506 — 15.530

22 1.000 1.000 1.000 1.000 1.000 1.000
— 1.034 — 0.611 — 0.232 0.127 0.200 0.245

0.531 0.610 0.607 0.451 0.380 0.325

base vectors : | 441 + )>, ¡ 421 + > , | 442 — >, | 422 — )>.

»7 = — 6 — 4 — 2 2 4 6

4.911 2.230 0.171 2.276 4.651 7.148

42 1.000 1.000 1.000 1.000 1.000 1.000
1.244 1.404 2.026 — 3.127 2.112 — 1.784

— 0.629 — 0.809 — 1.071 — 1.816 — 2.246 — 2.689
— 0.431 — 0.713 — 1.871 9.992 9.053 9.513

— 2.239 — 3.332 — 3.800 — 4.457 - 4.200 - 3.765

33 1.000 1.000 1.000 1.000 1.000 1.000
— 148.417 — 7.290 — 0.671 —■ 1.560 — 1.677 - 1.597
— 208.425 — 7.611 — 1.393 — 0.961 — 0.566 — 0.379
— 121.847 — 4.315 0.605 — 0.763 — 0.642 — 0.512

— 7.119 - 5.521 - 4.335 — 5.846 7.521 — 9.133

29 1.000 1.000 1.000 1.000 1.000 1.000
— 0.545 — 0.233 3.603 2.001 1.780 1.835
— 0.297 — 0.510 0.727 — 2.294 — 3.008 — 3.917

1.181 1.524 4.020 0.109 — 0.441 — 0.868

— 12.952 — 12.111 — 12.104 — 14.706 - 16.994 — 19.649

23 1.000 1.000 1.000 1.000 1.000 1.000
— 0.623 — 0.462 — 0.245 0.215 0.373 0.482

0.969 0.829 0.763 0.627 0.537 0.456
— 0.891 — 0.450 — 0.167 0.081 0.110 0.114
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base vectors : | 440 + )>, | 420 + >, | 400 + )>, | 441 — >, | 421 — >.

N = 4 .Q = |

r¡ — — 6 - 4 — 2 2 4 6

13.736 8.749 4.034 2.039 4.403 6.898

1.000 1.000 1.000 1.000 1.000 1.000
51 2.266 2.555 3.410 — 4.291 — 3.337 — 2.987

1.561 1.843 2.667 6.641 4.782 4.099
- 0.511 — 0.639 - 0.835 — 0.814 - 0.613 — 0.488
— 0.698 — 1.052 — 2.135 2.532 1.293 0.870

5.508 2.566 0.188 1.353 - 1.477 - 1.202

1.000 1.000 1.000 1.000 1.000 1.000
43 — 1.275 - 0.938 — 0.205 — 1.173 — 0.441 — 0.215

— 2.191 — 2.308 - 3.435 — 2.734 1.886 — 1.691
— 3.821 2.644 — 1.728 — 1.567 — 2.106 - 2.709
- 4.813 — 3.764 — 3.474 4.285 4.063 4.563

1.437 2.333 — 3.037 - 6.163 - 8.057 — 9.716

1.000 1.000 1.000 1.000 1.000 1.000
34 0.085 0.172 0.136 — 0.504 - 0.644 - 0.589

— 0.559 — 0.465 — 0.142 - 0.258 — 0.504 - 0.573
— 0.290 - 0.472 — 0.841 — 0.816 — 0.438 — 0.261

0.670 0.840 0.838 — 0.834 - 0.777 — 0.615

-6.733 — 5.465 4.165 — 7.293 — 11.045 — 14.793

1.000 1.000 1.000 1.000 1.000 1.000
30 6.922 — 17.873 — 9.735 3.961 3.743 5.130

- 9.733 20.639 7.376 1.714 2.139 3.283
10.840 — 17.270 — 5.376 — 2.728 — 4.024 — 7.444

— 5.800 4.197 — 3.760 0.947 — 0.933 — 3.180

- 12.474 11.584 — 11.753 — 15.296 — 18.558 — 22.587

1.000 1.000 1.000 1.000 1.000 1.000
24 — 0.868 — 0.554 — 0.263 0.267 0.531 0.758

0.659 0.302 0.071 0.055 0.181 0.318
0.791 0.892 0.914 0.853 0.770 0.658

— 0.491 — 0.408 — 0.221 0.187 0.295 0.325

X = 9

l'l — 18-5’ eigenvector: 555 + y.eigenvalue :

>/ o — 4 __2 2 4 6

28 — 28.500 — 25.1 77 — 21.833 — 15.1 77 — 11.833 — 8.500



54 Nr. 16

■v -5 " = I
base vectors: | 554 + )>, | 555 —

— —-6 — 4 - 2 2 4 6

40
16.500 — 13.636 - 10.616 — 1.322 1.105 2.139

1.000 1.000 1.000 1.000 1.000 1.000
— 1.581 — 2.065 — 2.599 — 3.745 — 4.341 — 4.946

32
— 23.500 — 21.698 — 20.050 — 17.011 15.562 - 14.139

1.000 1.000 1.000 1.000 1.000 1.000
0.632 0.484 0.385 0.267 0.230 0.202

N = 5 ß = -
2

base vectors: | 553 + )►, | 533 + )>, | 554 — >.

T] — — 6 — 4 — 2 2 4 6

— 9.480 — 9.049 — 8.384 — 5.218 — 2.054 1.176

48 1.000 1.000 1.000 1.000 1.000 1.000
0.497 0.490 0.433 — 4.295 — 4.425 — 4.149

— 1.056 — 1.361 — 1.732 - 1.139 0.888 — 0.636

— 15.523 — 13.722 11.256 — 6.609 - 5.512 — 4.366

41 1.000 1.000 1.000 1.000 1.000 1.000
2.442 5.528 37.895 1.145 0.870 0.814
2.098 2.726 10.044 — 2.723 — 3.210 — 3.741

— 21.397 - 19.628 18.760 - 18.573 - 18.834 19.210

35 1.000 1.000 1.000 1.000 1.000 1.000
— 0.871 — 0.461 — 0.168 0.096 0.155 0.194

0.537 0.569 0.535 0.408 0.354 0.309



Nr. 16 55

base vectors : | 552 + )>, | 532 + \ | 553 — >, | 533 — >.

= — 6 — 4 - 2 2 4 6

— 1.116 — 2.676 — 3.119 1.371 4.423 7.580

61 1.000 1.000 1.000 1.000 1.000 1.000
1.129 1.355 2.466 - 4.479 — 2.914 — 2.403

- 0.816 - 1.030 — 1.306 — 1.992 — 2.368 — 2.753
— 0.587 — 1.074 - 3.540 15.268 12.525 12.386

- 8.258 - 8.569 — 7.442 — 7.416 — 6.489 — 5.388

50 1.000 1.000 1.000 1.000 1.000 1.000
9.749 — 4.844 — 0.035 — 1.917 — 2.198 — 2.094

10.595 — 4.599 — 1.386 — 1.184 — 0.692 — 0.463
5.725 — 0.772 0.769 — 0.782 — 0.722 — 0.590

— 11.586 — 9.284 — 8.749 — 8.607 - 9 501 - 10.393

44 1.000 1.000 1.000 1.000 1.000 1.000
— 0.454 0.350 21.498 1.944 1.461 1.413
— 0.506 — 0.455 7.169 — 2.428 — 2.893 — 3.491

1.534 1.809 12.613 0.188 — 0.287 — 0.582

— 18.840 — 17.937 17.823 - 19.815 - 21.567 — 23.599

36 1.000 1.000 1.000 1.000 1.000 1.000
— 0.618 — 0.425 — 0.206 0.162 0.279 0.362

0.785 0.714 0.667 0.546 0.479 0.419
- 0.575 — 0.291 — 0.107 0.053 0.076 0.083



56 Nr. 16

base vectors : | 551 + )•, j 531 + /■, | 511 + )■, | 552 — )>, | 532 — >.

N = 5 <? = I

T] = — 6 — 4 __2 2 4 6

7.808 3.907 0.568 0.918 3.947 7.097

1.000 1.000 1.000 1.000 1.000 1.000
70 1.890 2.226 3.338 — 5.411 — 4.112 — 3.623

0.976 1.232 2.039 12.795 8.865 7.343
— 0.667 — 0.827 - 1.048 — 0.987 — 0.740 — 0.586
— 0.870 - 1.390 — 3.159 4.393 2.149 1.407

— 0.191 2.274 3.276 - 1.865 1.323 — 0.438

1.000 1.000 1.000 1.000 1.000 1.000
02 — 4.359 — 2.719 1.115 — 2.461 - 1.306 — 0.946

— 4.856 — 4.512 — 8.014 - 3.718 — 2.318 1.948
— 7.139 — 3.871 — 2.218 — 1.717 2.134 - 2.583
— 8.290 - 5.329 — 5.299 7.183 5.864 5.942

— 6.357 - 6.436 -— 6.565 — 9.164 10.375 11.357

1.000 1.000 1.000 1.000 1.000 1.000
52 — 0.048 0.071 0.052 — 0.823 1.124 — 1.077

- 0.500 — 0.339 — 0.046 — 0.235 — 0.483 — 0.566
— 0.467 — 0.708 — 1.099 - 1.036 — 0.578 - 0.351

0.841 0.953 0.707 — 0.790 — 0.822 — 0.678

— 11.233 — 9.299 — 7.877 - 10.230 12.980 - 15.877

1.000 1.000 1.000 1.000 1.000 1.000
46 2.985 13.310 141.387 3.477 2.431 2.483

— 5.559 — 17.369 — 85.487 0.887 0.858 0.997
4.330 11.111 59.345 — 2.665 — 3.114 — 4.047

— 1.922 0.032 74.877 0.874 — 0.423 — 1.205

- 17.727 16.931 —17. 216 — 20.692 — 23.635 - 27.126

1.000 1.000 1.000 1.000 1.000 1.000
37 — 0.754 - 0.475 — 0.229 0.214 0.399 0.546

0.546 0.211 0.043 0.027 0.081 0.138
0.780 0.810 0.794 0.701 0.631 0.555

— 0.474 0.337 — 0.161 0.116 0.180 0.205



Nr. 16 a /

N = 5 ß = 1
base vectors: | 550 + )>, | 530 + )>, | 510 + >, | 551 —)>, | 531 —| 511 —)>.

1 V = — 6 - 1 — 2 2 4 6

17.207 10.952 5.017 3.162 6.118 9.237

1.000 1.000 1.000 1.000 1.000 1.000
2.944 3.426 4.884 — 4.742 — 3.082 — 2.542

A 3.717 4.688 8.018 6.313 3.072 2.252
- 0.558 — 0.681 — 0.857 — 1.391 — 1.720 — 2.061

1.148 - 1.723 — 3.469 8.472 7.414 7.644
— 0.632 — 1.081 — 3.043 — 23.071 — 16.614 — 15.753

8.305 4.175 0.577 — 2.149 - 1.654 — 0.781

1.000 1.000 1.000 1.000 1.000 1.000
71 - 0.069 0.327 1.517 — 3.818 - 2.730 — 2.359

— 2.803 — 3.133 — 4.467 3.716 2.449 1.981
— 2.853 — 2.132 — 1.506 — 0.822 — 0.606 — 0.469
— 5.438 — 4.780 - 4.972 2.074 0.780 0.420
— 2.826 - 2.665 — 2.914 2.656 1.431 0.993

0.663 - 1.195 1.835 - 4.868 - 6.961 — 8.308

1.000 1.000 1.000 1.000 1.000 1.000
63 0.743 1.011 2.203 — 1.007 0.082 0.438

— 0.683 — 0.652 - 0.455 — 4.445 - 2.549 — 2.161
— 0.402 — 0.559 — 0.768 — 1.545 — 2.077 — 2.735

0.384 0.310 — 0.524 4.172 3.179 3.313
0.681 1.157 3.480 0.659 1.207 1.649

— 5.968 - 6.278 — 6.309 — 10.324 — 13.537 — 16.571

1.000 1.000 1.000 1.000 1.000 1.000
53 — 5.341 — 2.350 — 0.424 — 0.092 — 0.353 — 0.303

3.586 1.279 0.121 — 0.085 — 0.464 — 0.622
— 7.107 - 2.545 — 1.091 — 0.946 — 0.499 — 0.262

0.251 - 0.040 0.401 — 0.678 — 0.887 — 0.735
3.619 0.691 — 0.184 — 0.153 — 0.305 — 0.299

— 9.867 — 7.850 — 7.135 — 11.269 — 15.732 — 20.742

1.000 1.000 1.000 1.000 1.000 1.000
47 — 0.482 0.068 4.020 15.520 5.093 6.911

0.138 — 0.175 — 1.629 7.570 4.087 6.789
- 0.073 — 0.161 0.987 — 7.545 — 4.822 — 8.888

0.846 1.192 3.905 8.387 — 0.393 - 3.757
— 1.326 — 1.419 — 2.239 2.459 0.195 — 0.742

- 16.940 — 16.403 - 16.915 — 21.152 - 24.834 - 29.436

1.000 1.000 1.000 1.000 1.000 1.000
38 — 0.654 — 0.458 - 0.234 0.237 0.479 0.712

0.260 0.140 0.041 0.046 0.183 0.379
0.994 0.944 0.928 0.888 0.843 0.765

— 0.724 — 0.440 — 0.211 0.192 0.343 0.428
0.502 0.188 0.039 0.024 0.071 0.110



58 Nr. 16
N = 6 ß = L3

eigenvalue: 2r¡— 24.9, eigenvector: | 666 )>.

— — 6 — 4 — 2 2 4 6

39 — 36.900 — 32.900 — 28.900 — 20.900 — 16.900 12.900

11
A = 6 ß

base vectors: | 665 + >, 1 666 —>.

T¡ = — 6 — 4 — 2 2 4 6

— 23.128 — 19.476 — 15.721 — 8.035 — 4.139 — 0.221
56

1.000 1.000 1.000 1.000 1.000 1.000
— 1.955 — 2.432 - 2.938 — 4.002 - 4.550 — 5.103

— 31.672 — 29.324 — 27.079 — 22.766 — 20.661 - 18.579
45

1.000 1.000 1.000 1.000 1.000 1.000
0.512 0.411 0.340 0.250 0.220 0.196

9
A = 6 Æ

2
base vectors: | 664 + >, 1 644 + >, 1 665 —>.

T] = — 6 — 4 — 2 2 4 6

— 16.305 — 15.010 — 13.535 — 9.123 - 5.290 1.392

66 1.000 1.000 1.000 1.000 1.000 1.000
0.454 0.437 0.371 — 4.776 — 5.265 — 4.938

— 1.305 - 1.623 — 1.983 — 1.689 — 1.017 — 0.721

— 22.640 — 19.912 — 16.602 — 10.291 — 8.490 — 6.661

59 1.000 1.000 1.000 1.000 1.000 1.000
2.719 6.371 33.063 1.240 0.833 0.755
1.712 2.332 6.685 — 2.915 — 3.325 — 3.785

— 28.854 — 26.878 — 25.663 — 24.386 — 24.020 — 23.747

49 1.000 1.000 1.000 1.000 1.000 1.000
— 0.698 — 0.348 — 0.127 0.077 0.126 0.159

0.524 0.522 0.480 0.376 0.332 0.296



Nr. 16 59
N = 6 fi = Z

base vectors: | 663 + )>, | 643 + )>, | 664 — | 644 — )>.

r¡ — — 6 — 4 — 2 2 4 6

— 7.780 — 8.110 — 6.895 — 0.473 3.260 7.085

1.000 1.000 1.000 1.000 1.000 1.000
1.099 1.453 3.248 — 5.916 — 3.740 — 3.025

— 1.007 — 1.240 — 1.517 — 2.154 — 2.493 — 2.838
— 0.810 — 1.672 — 6.277 21.577 16.514 15.604

— 15.209 - 13.845 — 12.205 — 11.281 — 9.688 — 7.920

67 1.000 1.000 1.000 1.000 1.000 1.000
9.127 — 0.484 0.120 — 2.138 — 2.684 — 2.570
8.182 — 1.454 — 1.565 — 1.409 — 0.815 — 0.543
3.443 1.255 0.600 — 0.773 — 0.791 — 0.661

— 16.823 — 14.934 — 14.132 — 12.307 — 12.452 — 12.639

64 1.000 1.00Q 1.000 1.000 1.000 1.000
— 0.203 4.223 25.832 2.081 1.317 1.216
— 0.627 1.807 7.150 - 2.594 — 2.914 — 3.375

1.739 2.926 11.799 0.265 — 0.202 — 0.442

— 25.988 — 24.910 — 24.569 - 25.738 — 26.920 — 28.326

54 1.000 1.000 1.000 1.000 1.000 1.000
— 0.574 — 0.372 — 0.171 0.129 0.222 0.290

0.684 0.639 0.598 0.493 0.440 0.392
— 0.395 — 0.200 — 0.073 0.038 0.056 0.063



60 Nr. 16

base vectors : | 662 + >, | 642 + >, | 622 + >, | 663 — )>, | 643 — )>.

N = 6 ß = I

= — 6 — 4 — 2 2 4 6

1.230 - 1.526 — 3.467 — 1.132 2.568 6.381

1.000 1.000 1.000 1.000 1.000 1.000
1.758 2.180 3.683 — 6.606 — 4.943 — 4.302
0.796 1.074 1.971 20.348 13.926 11.254

— 0.826 — 1.008 — 1.239 — 1.151 — 0.856 — 0.676
- 1.104 — 1.867 -4.645 6.763 3.192 2.042

— 6.774 - 7.855 - 7.295 — 3.487 - 2.228 — 0.688

1.000 1.000 1.000 1.000 1.000 1.000
— 16.275 — 5.331 — 2.222 — 3.633 — 2.035 — 1.525
— 16.446 — 9.117 — 18.549 — 4.837 — 2.748 — 2.197
— 19.525 — 5.516 — 2.787 — 1.860 — 2.210 — 2.583
— 22.252 — 7.957 — 8.672 10.540 7.928 7.548

— 12.017 — 11.415 — 11.176 —13.048 — 13.595 — 13.901

1.000 1.000 1.000 1.000 1.000 1.000
72 — 0.078 0.047 0.058 — 1.004 — 1.509 — 1.477

— 0.408 — 0.204 — 0.035 — 0.196 -0.452 — 0.546
— 0.658 — 0.940 — 1.296 — 1.240 — 0.706 — 0.434

0.980 0.980 0.592 — 0.750 — 0.867 — 0.739

— 16.668 - 14.185 — 12.795 — 14.039 — 15.961 - 18.090

1.000 1.000 1.000 1.000 1.000 1.000
65 2.503 7.250 26.193 3.590 2.013 1.874

— 4.837 — 8.414 — 10.944 0.644 0.519 0.560
2.984 4.856 8.652 — 2.776 — 2.920 — 3.460

— 0.829 1.543 14.032 0.949 — 0.244 — 0.775

— 24.271 — 23.519 - 23.767 — 26.794 — 29.285 — 32.203

1.000 1.000 1.000 1.000 1.000 1.000
55 — 0.658 — 0.414 — 0.197 0.173 0.316 0.427

0.393 0.138 0.027 0.015 0.046 0.078
0.739 0.736 0.708 0.615 0.558 0.500

— 0.413 — 0.266 — 0.119 0.080 0.126 0.148



Nr. 16 61

base vectors: | 661 + \ | 641 + >, | 621 + )>, | 662—)>, | 642—)>, | 622 — •>.

N = 6 .0 = I

r¡ = — 6 — 4 — 2 2 4 6

10.761 5.658 1.285 3.270 6.868 10.631

1.000 1.000 1.000 1.000 1.000 1.000
2.571 3.121 4.948 — 6.377 — 4.023 — 3.253
2.483 3.385 7.184 14.197 6.316 4.398

— 0.698 — 0.842 — 1.033 — 1.533 — 1.819 — 2.115
— 1.376 — 2.161 — 4.760 12.321 9.797 9.519
— 0.698 — 1.344 — 5.119 — 49.751 — 29.946 — 25.832

2.006 — 1.194 — 3.531 — 4.003 — 2.832 - 1.320

1.000 1.000 1.000 1.000 1.000 1.000
— 1.497 — 0.651 1.655 — 4.837 — 3.465 — 2.970
— 5.024 — 5.355 — 5.770 6.958 4.680 3.719
— 4.106 — 2.721 — 1.564 — 0.987 — 0.724 -—- 0.560
— 7.338 — 5.968 — 5.286 3.693 1.462 0.817
— 3.381 — 2.952 - 1.072 3.571 2.008 1.393

— 4.789 — 5.332 - 4.347 — 6.198 — 7.446 - 8.179

1.000 1.000 1.000 1.000 1.000 1.000
0.607 1.054 3.209 — 2.192 — 0.817 — 0.376

— 0.714 — 0.674 1.207 — 5.616 — 3.098 — 2.487
— 0.553 — 0.728 — 0.825 — 1.679 — 2.075 — 2.532

0.396 0.124 — 1.140 6.616 4.690 4.435
0.899 1.749 6.218 0.389 1.150 1.504

- 11.500 — 10.961 — 10.573 — 14.358 — 16.884 - 19.214

1.000 1.000 1.000 1.000 1.000 1.000
73 — 10.085 — 0.974 — 0.132 — 0.345 — 0.737 — 0.738

8.500 0.511 0.012 — 0.138 — 0.485 — 0.652
— 12.091 — 1.431 — 1.153 — 1.114 — 0.646 — 0.360

1.047 0.682 0.508 — 0.659 — 0.893 — 0.779
4.543 — 0.432 — 0.155 — 0.104 — 0.223 — 0.237

- 13.717 - 11.779 - 11.794 15.386 — 18.894 — 22.914

1.000 1.000 1.000 1.000 1.000 1.000
68 — 0.279 1.453 11.255 8.624 3.440 3.212

— 0.030 — 1.143 — 4.328 2.757 1.747 1.977
— 0.185 0.605 3.513 — 4.475 — 3.609 — 4.429

1.012 1.625 8.045 3.864 — 0.089 — 1.321
— 1.508 — 1.752 — 3.188 0.796 0.130 — 0.153

— 22.962 — 22.593 — 23.240 — 27.524 — 31.011 — 35.204

1.000 1.000 1.000 1.000 1.000 1.000
57 — 0.628 — 0.424 — 0.211 0.205 0.395 0.562

0.273 0.131 0.033 0.029 0.103 0.196
0.865 0.840 0.819 0.751 0.699 0.636

— 0.546 — 0.340 — 0.160 0.132 0.225 0.278
0.302 0.108 0.021 0.012 0.033 0.051



62 Nr. 16
X = 6 <2 = I

base vectors: | 660 + >, | 640 + )>, | 620 + >, | 600 + >, | 661 — )>, 
I 641 — >, I 621 — >.

7/ == — 6 — 4 — 2 2 4 6

20.703 13.179 6.009 3.047 6.636 10.396

1.000 1.000 1.000 1.000 1.000 1.000
3.642 4.348 6.495 — 7.352 — 5.077 — 4.300
6.358 8.496 16.462 23.764 12.993 9.905
4.037 5.649 12.004 — 34.171 — 17.158 — 12.525

— 0.598 — 0.714 — 0.874 — 0.862 — 0.697 — 0.581
— 1.658 — 2.483 — 4.971 5.484 2.800 1.888
— 1.709 — 3.009 — 8.870 - 12.174 — 4.392 — 2.551

11.182 5.874 1.264 — 1.158 — 0.286 1.113

1.000 1.000 1.000 1.000 1.000 1.000
0.910 1.476 3.282 — 4.449 — 2.472 - 1.857

— 2.356 — 2.508 — 2.531 2.535 0.142 — 0.273
— 2.769 — 3.742 — 8.776 9.588 4.365 3.219
— 2.380 — 1.866 — 1.416 - 1.365 - 1.696 — 2.056
— 6.154 — 5.848 — 6.970 7.890 6.323 6.331
— 5.976 — 6.372 — 10.012 — 15.544 — 9.244 — 8.186

2.886 — 0.154 - 2.437 — 6.473 — 7.838 — 8.605

1.000 1.000 1.000 1.000 1.000 1.000
1.430 1.862 3.257 — 3.672 — 2.368 — 1.936

— 0.190 0.017 0.545 1.983 1.119 0.736
— 0.864 — 0.983 — 0.980 1.343 1.251 1.124
— 0.482 — 0.629 — 0.855 — 0.853 — 0.613 — 0.462
— 0.015 — 0.345 — 1.901 2.129 0.521 0.147

1.068 1.660 3.333 3.422 1.818 1.208

— 4.471 — 5.273 — 4.443 — 8.425 — 12.460 — 15.518

1.000 1.000 1.000 1.000 1.000 1.000
— 2.275 — 1.386 0.225 — 1.078 0.351 0.879

B — 1.051 — 2.133 — 7.489 — 6.249 — 2.765 — 2.021
3.089 3.545 7.386 — 3.250 — 1.945 — 1.712

— 3.756 — 2.417 — 1.749 — 1.581 — 2.058 — 2.746
— 2.325 — 2.538 — 5.201 4.927 2.906 2.621

2.694 1.631 — 0.539 — 0.011 1.419 2.034

— 10.435 — 10.131 — 10.266 — 15.117 — 19.353 — 23.659

1.000 1.000 1.000 1.000 1.000 1.000
— 0.163 — 0.148 — 0.235 0.113 — 0.113 — 0.121

74 — 0.235 — 0.036 0.060 0.009 — 0.256 — 0.482
0.296 0.032 — 0.026 0.003 — 0.116 — 0.268

— 0.322 — 0.685 — 1.033 — 1.021 — 0.626 — 0.299
0.853 0.885 0.418 — 0.493 — 0.892 — 0.816

— 0.653 — 0.493 — 0.115 — 0.125 — 0.416 — 0.495

Continued next page



Nr. 16 63

Continuation of

N = 6 ß = -
2

base vectors: | 660 + >, | 640 + >, | 620 + >, | 600 + >, | 661 —\ 
I 641 —>, I 621 — >.

i] = — 6 — 4 — 2 2 4 6

— 13.673 - 11.555 — 11.349 — 16.175 — 20.943 — 26.907

1.000 1.000 1.000 1.000 1.000 1.000
69 9.085 10.291 6.560 — 14.612 12.536 10.379

— 13.400 - 9.981 2.819 — 6.223 10.248 11.336
12.883 7.570 1.088 — 1.686 4.288 5.538
11.185 7.818 1.830 4.984 — 10.418 — 12.297
- 3.429 3.850 5.694 — 10.813 2.228 — 4.031

— 0.061 — 3.798 — 2.214 — 3.733 2.374 — 0.462

— 22.392 — 22.141 — 22.979 — 27.899 - 31.957 — 37.020

1.000 1.000 1.000 1.000 1.000 1.000
60 — 0.658 — 0.432 — 0.216 0.217 0.436 0.657

0.356 0.149 0.036 0.037 0.151 0.337
— 0.209 — 0.059 — 0.007 0.006 0.041 0.120

0.934 0.943 0.937 0.910 0.883 0.836
— 0.582 — 0.397 — 0.197 0.187 0.354 0.480

0.251 0.121 0.031 0.027 0.093 0.170



64 Nr. 16

Table I a. Eigenvalues for the Spherical Case (ó — 0).

Level designation in the 
spherical case r Label on level in Fig. 5

X = 0 sl/2 0.000

X = 1 P3/2
P1I2

- 1.000
2.000

2, 3
4

X = 2
Sl/2
d5l2
d3/2

0.000
— 2.000

3.000

9
5, 6, 7
8, 11

X = 3

P3I2
Pl/2 
bn 
f5/2

1.700
1.300

- 7.200
— 0.200

16, 17
26
10, 12, 13, 14
15, 19, 20

X = 4

Sl/2

rf3/2

a7/2

0.000
— 4.700

0.300
— 13.000

— 4.000

43
27, 29, 30
42, 51
18, 21, 22, 23, 24
25, 31, 33, 34

X = 5

P3I2
Pl/2
I7I2 
^5/2 
llll/2 
/l9/2

— 1.900
1.100

— 8.400
— 1.400

— 18.500
— 7.500

70, 71
A
41, 44, 46, 47
61, 62, 63
28, 32, 35, 36, 37, 38
40, 48, 50, 52, 53

X = 6

Sl/2 
d5/2 
d3/2

y-n 
'13/2 
'11/2

0.000
— 4.700

0.300
13.000

— 4.000
— 24.900

11.900

B

59, 64, 65, 58, 69

39, 45, 49, 54, 55, 57, 60
56, 66, 67, 72, 73, 74

X = 7 Ù5/2 — 29.400 58



Nr. 16 65

Table Ib. Eigenvalues and Eigenfunctions of the Shell = 4 
with the Parameter /t = 0.55 (added in proof).

eigenvalue: r — - r¡—15, eigenvector: | 414 ).

= — 6 - 4 — 2 2 4 6

18 — 23.000 — 20.333 —17.667 12.333 — 9.667 — 7.000

o
base vectors: | 443 | 444 — ).

// = — 6 — 4 — 2 2 4 6

25
— 12.628 — 10.632 — 8.392 — 3.519 — 0.982 1.589

— 0.643 — 0.516 — 0.411 - 0.277 — 0.235 — 0.204
0.766 0.857 0.912 0.961 0.972 0.979

21
- 18.372 — 17.035 15.942 — 14.148 -13.351 — 12.589

0.766 0.857 0.912 0.961 0.972 0.979
0.643 0.516 0. Ill 0.277 0.235 0.204

base vectors: | 442 — ), j 422 4- | 443— ).
9

rç = — 6 — 4 __ 2 2 4 6

— 5.119 — 5.644 — 5.891 2.948 — 0.447 2.111

31 0.705 — 0.625 — 0.521 — 0.179 — 0.228 — 0.257
0.458 — 0.455 — 0.485 0.972 0.964 0.959

— 0.541 0.634 0.702 0.152 0.137 0.119

— 10.702 — 9.435 — 7.619 — 5.741 — 5.390 — 4.948

27 0.139 0.016 — 0.138 — 0.383 — 0.316 — 0.266
0.659 0.805 0.860 — 0.211 — 0.207 — 0.188
0.739 0.593 0.492 0.899 0.926 0.946

— 16.479 - 15.221 14.790 - 15.611 16.463 — 17.463

22 — 0.695 0.780 0.812 0.906 0.921 0.929
0.596 — 0.381 — 0.159 0.102 0.167 0.211

— 0.401 0.496 0.515 0.410 0.352 0.302
Dan. Mat. l'vs. Medd. 29, no.16.
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base vectors: | 441 4- | 421 + ), | 442 — ), | 422 — ).

T/ = — 6 — 4 — 2 2 4 6

3.732 1.135 — 0.667 1.631 3.969 6.444

42 0.531 0.443 0.252 0.078 0.091 0.089
0.746 0.745 0.684 — 0.292 — 0.218 — 0.175

— 0.316 — 0.338 — 0.259 — 0.145 — 0.210 — 0.246
— 0.249 — 0.368 — 0.634 0.942 0.949 0.949

— 3.575 — 4.513 — 4.994 — 5.389 — 5.138 — 4.732

— 0.031 — 0.063 0.154 — 0.311 — 0.409 — 0.464
33 0.490 0.579 0.660 0.870 0.851 0.841

0.712 0.604 0.112 0.198 0.180 0.148
0.501 0.544 0.727 0.326 0.275 0.237

— 8.286 — 6.688 — 5.564 — 7.513 — 9.237 — 10.881

0.595 0.544 — 0.553 — 0.448 — 0.344 — 0.269
29 — 0.300 — 0.165 0.266 — 0.364 — 0.386 — 0.355

— 0.259 — 0.421 0.752 0.815 0.846 0.876
0.699 0.707 — 0.240 0.050 0.132 0.187

— 14.471 — 13.868 — 14.041 — 16.661 — 18.861 — 21.431

— 0.602 0.710 0.779 0.834 0.840 0.840
23 0.336 — 0.286 — 0.163 0.157 0.280 0.369

— 0.571 0.587 0.596 0.525 0.456 0.388
0.446 — 0.264 — 0.109 0.060 0.084 0.090
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base vectors: | 440 + ), | 420 ), | 400 + | 441 — ), | 421 — ).
2

7/ = — 6 — 4 — 2 2 4 6

13.130 8.188 3.551 1.811 4.142 6.614

0.298 0.248 0.159 0.091 0.140 0.170
51 0.745 0.725 0.670 — 0.478 — 0.531 — 0.556

0.537 0.559 0.596 0.833 0.810 0.796
— 0.144 — 0.149 — 0.125 — 0.068 — 0.079 —0.077
— 0.218 — 0.282 — 0.393 0.253 0.189 0.151

4.517 1.723 — 0.319 — 1.955 — 2.266 — 2.091

— 0.142 — 0.166 — 0.146 0.150 0.176 0.163
43 0.152 0.116 — 0.064 — 0.271 — 0.123 — 0.062

0.318 0.425 0.635 — 0.437 — 0.343 — 0.279
0.531 0.443 0.256 — 0.235 — 0.373 — 0.445
0.757 0.763 0.711 0.811 0.835 0.833

— 2.734 — 3.610 — 4.315 — 7.297 -9.189 -10.887

0.721 — 0.651 0.438 — 0.412 — 0.578 — 0.653
34 0.132 — 0.242 0.539 0.669 0.539 0.477

— 0.458 0.423 — 0.394 0.289 0.370 0.414
— 0.219 0.286 — 0.207 0.192 0.204 0.158

0.454 — 0.507 0.565 0.511 0.444 0.387

— 7.698 — 6.293 — 5.173 — 8.602 12.320 16.125

— 0.050 0.194 — 0.492 — 0.498 — 0.305 — 0.187
30 0.450 — 0.552 0.479 — 0.470 — 0.549 — 0.493

- 0.553 0.553 — 0.292 — 0.172 — 0.281 -0.289
0.628 — 0.574 0.664 0.707 0.702 0.741

— 0.308 0.151 — 0.036 0.047 0.181 0.299

— 13.815 — 13.275 — 13.676 - 17.224 — 20.301 — 24.111

0.608 0.671 0.720 0.743 0.723 0.695
2 1 —0.450 — 0.314 — 0.162 0.169 0.332 0.466

0.308 0.149 0.037 0.031 0.103 0.183
0.505 0.608 0.660 0.635 0.565 0.471

— 0.280 — 0.243 — 0.137 0.121 0.192 0.211

i
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Table II. Matrix Elements of the Coupling Energy between some 
Particular States with N Differing by Two. (The energy unit 

is xfico0.)

V = 2 r] == 4 7/ = 6

• <N = 4 P = |, #42 1 1 N - 6 P = #57>
0.006 0.015 0.017

• O = 4 P = 1 #51 \H¿ 1 X = 6 P = 1, #60> 
xnojo 2 2

0.007 0.013 0.018

Table III. Connection between Ground State Spin /0 and 
Decoupling Factor a.

Range of a '()

— 14 < a < — 10 11/2
— 10 < a < — 6 7/2
— 6 < a < — 1 3/2
— 1 < a < 4 1/2

4 < a < 8 5/2
8 < a < 12 9/2
12 < a < 16 13/2
__ __ __ __ __ __ __ __

Indleveret til selskabet den 10. december 1954.
Eærdig fra trykkeriet den 25. oktober 1955.






